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ABSTRACT

Traceability links can be recovered using data mined from a
revision control system, such as CVS, and an issue tracking
system, such as Bugzilla. Existing approaches to recover
links between a bug and the methods changed to fix the
bug rely on the presence of the bug’s identifier in a CVS
log message. In this paper we present an approach that re-
lies instead on the presence of a patch in the issue report
for the bug. That is, rather than analyzing deltas retrieved
from CVS to recover links, our approach analyzes patches
retrieved from Bugzilla. We use BUGTRACE, the tool im-
plementing our approach, to conduct a case study in which
we compare the links recovered by our approach to links
recovered by manual inspection. The results of the case
study support the efficacy of our approach. After describing
the limitations of our case study, we conclude by reviewing
closely related work and suggesting possible future work.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—documentation, version control

General Terms

Documentation, Management, Measurement

Keywords
Traceability, link recovery, trace automation, mining soft-

ware repositories, bug assignment, bug mapping

INTRODUCTION

Traceability links between software artifacts such as code
and documentation are needed to perform various software
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evolution tasks. For example, traceability links between
fixed bugs and changed source code elements are required
to construct defect prediction models [13, 17]. Such trace-
ability links also have value as research instrumentation, be-
cause they are needed to evaluate new techniques that ad-
dress problems such as bug localization [23]. However, even
in the presence of a rigid bug fixing process, lack of integra-
tion between the revision control system (e.g., CVS) and the
issue tracking system (e.g., Bugzilla) makes documentation
of traceability links difficult [3]. In response to this prob-
lem, researchers have developed approaches that use bug
identifiers present in CVS log messages to recover missing
traceability links [3, 5, 12, 14, 18, 29]. To complement these
approaches, we have developed an approach that recovers
traceability links between fixed bugs and affected methods
via analysis of patches stored in the issue tracking system.

Ayari et al. [3] report on their investigation of threats
and difficulties associated with integrating CVS and Bugzilla
repositories. They note that existing approaches to recover-
ing traceability links for fixed bugs begin with a search for
(potential) bug identifiers in CVS log messages and that not
all fixed bugs can be traced using these log messages. In
particular, each fixed bug in a Bugzilla repository belongs
to one of the following sets:

Biog The bug ID is found in a CVS log message but
no patch is available in Bugzilla.

Bpaten  The bug ID is not found in a CVS log message
but a patch is available in Bugzilla.

Buoth The bug ID is found in a CVS log message and
a patch is available in Bugzilla.

Brone The bug ID is not found in a CVS log message

and no patch is available in Bugzilla.

The four sets are mutually exclusive.

Existing approaches to recovering traceability links are
applicable to fixed bugs in sets Bjog and Byotn, but not to
the fixed bugs in Bpatcn. Yet, Ayari et al. [3] report that for
the Mozilla browser, over 17,000 (nearly 20%) of the fixed
bugs belong to Bpaich, whereas less than 10,000 (about 10%)
of the fixed bugs belong to Biog. Indeed, a link recovery tool
with added support for Bpaicn, would be applicable to over
56% of the 92,858 fixed bugs for Mozilla (note that over
25,000, or nearly 28%, of the fixed bugs are in Bpoth).



The findings of Ayari et al. [3] suggest that a significant
number of fixed bugs belong to Bpatcr and thus that an au-
tomated approach to recovering traceability links for these
fixed bugs is necessary for correct and efficient performance
of software evolution tasks. We have developed such an ap-
proach, and in this paper we present its design, implemen-
tation, and evaluation. BUGTRACE, the tool implementing
our approach, analyzes patches available in Bugzilla and is
applicable to fixed bugs in Bpatch and Biotn (as well as cer-
tain fixed bugs in Bjog and Brone)-

Our approach is similar to that of Eaddy et al. [12]. Their
tool, BUGTAGGER, takes as input a bug ID found in a CVS
(or SVN) log message, uses the bug ID to retrieve the associ-
ated delta(s) from CVS, and analyzes the delta(s) to recover
traceability links. BUGTRACE takes as input a Bugzilla
repository and finds issue reports with status RESOLVED/
VERIFIED/CLOSED and resolution FIXED and with at
least one non-obsolete patch attached.Next, BUGTRACE re-
trieves the patches associated with each identified issue re-
port, and analyzes the patches to recover traceability links.

The key advantage of our approach is that patches are of-
ten more fine-grained than CVS commits. That is, a patch,
particularly one that has been verified by a quality assurance
(QA) team, is likely to contain only the changes required to
fix the bug. On the other hand, CVS commits commonly
include changes unrelated to the bug [6, 27] or changes re-
quired to fix multiple bugs. The key disadvantage of our
approach is that its accuracy is more reliant on the qual-
ity of information in the issue tracking repository than are
other approaches. Unfortunately, issue tracking reposito-
ries for open source projects are known to contain incorrect
metadata (e.g., enhancements classified as bugs [3, 12, 29]).

‘We evaluate our approach by comparing traceability links
recovered automatically, via BUGTRACE, and manually, via
inspection by two of the authors, for over 300 fixed bugs in
the Bugzilla repositories for Eclipse and Rhino. Our analysis
of the results reveals a number of human errors, but also a
number of scenarios that are intractable to our tool. Overall,
the results support the efficacy of our approach in increas-
ing the quantity of recovered traceability information for
fixed bugs in Bpater, and suggest that its combination with
existing approaches may improve the quality of recovered
traceability information for fixed bugs in Bpoth.-

2. BACKGROUND

In this section we describe the life cycle for a Bugzilla
issue report, focusing on the stages of the life cycle that are
most relevant to our work.

A user creates an issue report upon discovering a new bug
(or formulating a new enhancement request). Upon creation
the issue report has status UNCONFIRMED. A quality as-
surance (QA) engineer (in the open source community, this
is typically a project maintainer) evaluates the issue report
and updates the status to NEW if the bug is confirmed (or
the enhancement approved) or ASSIGNED if the bug is as-
signed to a developer. Once development related to the bug
is complete, the status is changed to RESOLVED and the
resolution is set to one of seven possible values according to
the outcome of development. For our work, the relevant res-
olution is FIXED. Issue reports are often abandoned after
reaching status RESOLVED and resolution FIXED. How-
ever, a QA engineer should verify the changes and update
the status to VERIFIED or CLOSED.
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An issue report undergoes several changes during its life.
The reporting user provides a summary of the bug (which
Bugzilla stores in the short_desc field) and the details of
the bug (which Bugzilla stores in a long_desc field). Af-
ter the user submits the issue report, Bugzilla assigns it
a bug ID. Subsequent viewers of the issue report (includ-
ing developers and other users) may add comments (which
Bugzilla stores in additional long_desc fields). Typical com-
ments may include questions about the initial summary and
details, or new information about the bug, such as addi-
tional ways in which the bug can be triggered. Comments
may also contain fixes for the bug. Those fixes may be de-
scribed in natural language or in source code, and may be
included in the comment field or be included as an attach-
ment. Each attachment in Bugzilla has an ID, a description,
a file name, and a set of flags that indicate its status. Two
of the flags are relevant to our work: is_obsolete, which
indicates whether the attachment has been withdrawn or
superceded, and is_patch, which indicates whether the at-
tachment is a patch.

Ideally, for every patch uploaded to Bugzilla as an at-
tachment, is_patch is true, and for every attachment with
is_patch set to true, the patch is: valid (e.g., is not a
‘java’ file), verified (i.e., has been verified by a QA engi-
neer), and current (unless is_obsolete is true). Unfortu-
nately, patches are sometimes provided as comments, at-
tached patches do not always have the correct flags set,
and is_patch is true for some attached source files and zip
archives. Moreover, in the ideal scenario, when a developer
commits a bug fixing change to a CVS repository, he includes
‘bug ID’ in the CVS log message (for each bug fixed in the
commit, where the ideal number of bugs fixed per commit
is one). However, not all CVS log messages for commits
including bug fixing changes list the corresponding bug ID.

3. APPROACH

In this section we describe the design and implementation
of BUGTRACE, the tool implementing our approach. BUG-
TRACE takes as input a Bugzilla repository, the correspond-
ing CVS repository, and (optionally) a bug ID of interest.
The output of BUGTRACE is a set of recovered traceability
links. Each link associates a bug ID with a method modified
(added, changed, or removed) to fix the bug.

3.1 Patch Retrieval

BUGTRACE begins the patch retrieval phase by search-
ing a Bugzilla repository for issue reports with status RE-
SOLVED/ VERIFIED /CLOSED and resolution FIXED. For
each report that meets this criteria, BUGTRACE extracts the
bug ID and builds a list containing the ID of each attach-
ment for which isobsolete is false and ispatch is true.
If the resulting list is non-empty, BUGTRACE retrieves the
patches from the Bugzilla repository and passes them to the
patch analysis phase.

If BUGTRACE fails to identify at least one non-obsolete
patch, it builds a list containing the ID of each attach-
ment for which isobsolete is false. If the resulting list
is non-empty, BUGTRACE retrieves the attachments from
the Bugzilla repository and attempts to parse each one as a
patch. BUGTRACE discards any attachment for which pars-
ing fails, and passes the remaining attachments (patches) to
the patch analysis phase.



If BUGTRACE has yet to retrieve a patch, it searches the
comments of the issue report in reverse order, attempting
to identify and extract an embedded patch. If a patch is
identified, BUGTRACE passes it to the patch analysis phase.
Otherwise, patch retrieval fails.

The two fallback options (considering attachments not
marked as patches and searching comments) are not crit-
ical to the approach. However, using these options Bua-
TRACE can recover traceability links for fixed bugs in Bjoq
and Bpone. We exercised both options in our case study, and
in each instance BUGTRACE recovered correct traceability
links. Nevertheless, these fallback options could potentially
cause BUGTRACE to recover significant numbers of incorrect
links (false positives). An extensive study of fixed bugs for
which these options are triggered is needed to evaluate their
impact on the accuracy of BUGTRACE.

3.2 Patch Analysis

In this phase each retrieved patch is analyzed. A patch
comprises one or more diffs, and each diff is in context for-
mat or unified format. BUGTRACE splits a patch into its
constituent diffs, each of which lists changes to a single file,
and analyzes the diffs individually. When analyzing a diff,
BUGTRACE first extracts the CVS path of the file from which
the diff was generated. This extraction is simple when an-
alyzing a diff generated using cvs diff, because such diffs
include the full CVS path of the file. However, we found
that with minimal information about a project’s file struc-
ture, BUGTRACE reliably extracts correct file paths from a
diff, whether it is generated manually using diff (against
a CVS checkout) or automatically using cvs diff (against
the CVS server or a local mirror).

After extracting the CVS path of the file, BUGTRACE de-
termines the timestamp of the original file (i.e., the date
and time at which the diff was generated). In the special
case that a diff introduces a new file, BUGTRACE instead
determines the timestamp of the updated file. BUGTRACE
handles three different timestamp formats that we observed
in our case study. Once BUGTRACE has the date and time
at which the diff was generated, it searches the information
returned by cvs log for the file of interest to determine the
CVS revision number of the file at the given date and time.

BUGTRACE uses the CVS revision number discovered in
the previous step to checkout the file revision from which
the diff was generated (i.e., the revision of the file contain-
ing the bug). To validate that it has the correct file revi-
sion, BUGTRACE compares the context lines from the diff —
unchanged or removed lines from the original file that are
included in the diff to provide context — to the correspond-
ing lines in the file. Note that the corresponding lines are
determined using the line range provided by the diff. For
our case study, we found matching three context lines from
the end of the diff to be sufficient for validation. We expect
lines at the end of the diff to be least likely to match an
incorrect file revision.

If validation of the checked out file revision fails, BuG-
TRACE checks out subsequent file revisions until a revision
is validated successfully, or until the HEAD revision of the
CVS repository is reached. In the latter case, BUGTRACE
checks out prior file revisions until a revision is validated
successfully, or until the initial revision of the CVS reposi-
tory is reached. BUGTRACE passes all successfully validated
files for a patch to the link recovery phase.
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3.3 Link Recovery

In this phase BUGTRACE uses a patch and the original files
(the files from which the patch was generated) to recover
traceability links between a bug and the methods modified
(added, changed, or removed) to fix the bug. First, Bua-
TRACE parses the original files, storing the following infor-
mation for each method: the method signature, the start
line, and the end line. The method signature consists of the
qualified method name, which includes the names of enclos-
ing classes and methods (but not the name of the enclos-
ing package), and the parameter types. Next, BUGTRACE
applies the patch to the original files to obtain the patched
files, and then parses the patches files, storing the previously
described information for each method.

BUGTRACE uses the stored method information for the
original and patched files to detect the set of added methods
and the set of removed methods. In particular, given the set
of methods in the original files, M,, and the set of methods
in the patched files, M, the set of added methods, M,,
is defined as M, = M, — (M, N M,). Similarly, the set
of removed methods, M., is defined as M, = M, — (M, N
M,,). Because we use method signatures to identify methods,
a change to a method signature is detected as a method
removal and a method addition.

To detect the set of changed methods, BUGTRACE in-
spects the patch, storing the line numbers of lines that begin
with - or !. For lines that begin with +, BUGTRACE stores
the line number of the first immediately preceding line that
does not also begin with +. Note that all line numbers are
computed as offsets from the start line provided by the cur-
rent diff. BUGTRACE uses the stored line numbers and the
stored method information for the original files to detect the
set of changed methods, M.. The final set of methods mod-
ified to fix the bug, M, is defined as M = M, U M, U M..
For each method m € M, BUGTRACE recovers a traceability
link between the bug and m.

3.4 A Final Note on Implementation

During link recovery we compute and store a line range
for each method, and we chose to exclude the last line of the
method (the line containing ‘}’) from this line range. We
made this decision to avoid false positives caused by certain
diffs. For example, the diff in Figure 1 shows that a new
method, bar, has been added between the existing methods
foo and baz. If we include the last line of a method in
its line range, we will detect a change to foo. To avoid
this false positive, we exclude the last line of each method
from consideration. Our decision can result in false negatives
(examples of which are described in Section 4.3), but we
believe the trade-off is appropriate.

public void baz () {
int k;

1 @@ -1,6 +1,9 Q@

2 public class Example {
3 public void foo () {
4 int i;

5 + }

6 + public void bar () {
7 o+ int j;

8

9

0

—

Figure 1: Example of a Problematic Diff




Table 1: Rhino Results

Version Bugs |Li| |Ls| |La| |Lal
1.4R3 4 6 5 5 2
1.5R1 7 31 35 29 8
1.5R2 3 16 9 6 13
1.5R3 10 31 31 31 0
1.5R4 13 87 114 84 33
1.5R5 32 321 491 289 234
1.6R1 13 42 45 41 5
1.6R2 6 18 18 18 0
1.6R3 1 1 3 1 2
1.6R4 12 95 107 90 22
1.6R6 1 1 1 1 0
1.6R7 2 6 6 5 2
Total 104 655 866 600 321

(a) High Level Comparison

4. CASE STUDY

In this section we describe the case study that we con-
ducted to evaluate the accuracy of our approach. We com-
pare the traceability links recovered by BUGTRACE to the
traceability links recovered by manual inspection, noting any
disagreements. We then analyze the results.

4.1 Data Examined

The data examined includes over 300 issues from the Bugzilla

repositories for Eclipse’ and Rhino®. Each issue has status
RESOLVED/VERIFIED/CLOSED and resolution FIXED.
Most issues have at least one non-obsolete patch as an at-
tachment. However some issues either have a patch embed-
ded in a user comment, or have a non-obsolete attachment
that contains a patch (but is not marked as such). We previ-
ously used these issue reports to evaluate a bug localization
technique based on latent Dirichlet allocation [23].

Antoniol et al. [1] classify reported issues as bugs or non-
bugs, where “bugs” are requests for corrective maintenance
and “non-bugs” are requests for other activities, such as per-
fective or adaptive maintenance. We examined 203 issues
for Eclipse, all of which are bugs, and 104 issues for Rhino,
some of which are bugs and some of which are non-bugs
(though for ease of explication, we hereafter refer to all ex-
amined issues as bugs). The Eclipse bugs span 13 versions
(from 3.0 to 3.4) and the Rhino bugs span 12 versions (from
1.4R3 to 1.6RT).

4.2 Procedure

For each of the 307 bugs, we have two sets of traceability
links: those recovered manually by inspection (L;) and those
recovered automatically by BUGTRACE (Ly). Each set con-
tains only links between the bug and the methods modified
(added, changed, or removed) to fix the bug. That is, the
sets do not include links between the bug and source code
elements such as a classes. A link is expressed as a tuple
with a bug ID as the first entry and a method signature as
the second entry.

"http://www.eclipse.org
’http://www.mozilla.org/rhino
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Version |D0| |D1| |D2| ‘D3| ‘D4|
1.4R3 1 0 0 1 0
1.5R1 2 0 0 5 1
1.5R2 10 0 0 2 1
1.5R3 0 0 0 0 0
1.5R4 0 3 1 29 0
1.5R5 29 3 1 134 67
1.6R1 1 0 0 3 1
1.6R2 0 0 0 0 0
1.6R3 0 0 0 2 0
1.6R4 3 1 1 8 9
1.6R6 0 0 0 0 0
1.6R7 1 0 0 1 0
Total 47 7 3 185 79

(b) Categorized Disagreements

We first compare the corresponding sets at a high level,
noting the number of links in each set (|L;| and |Ls|), the
number of links agreed upon (|Lq| where Lo = L; N Ly), and
the number of links for which there is a disagreement (|Lq4|
where Lg = (L;NLy)°). We next compare the disagreements
between corresponding sets at a low level. We inspect each
disagreement, placing it into one of five sets:

Do Incorrect links in L;

(false positives from manual inspection)
D, Correct links in L;

(false negatives from BUGTRACE)
Dy Incorrect links in Ly

(false positives from BUGTRACE)
D3 Correct links in Ly

(false negatives from manual inspection)
D4 Task mismatch

We indicate that a link results from a task mismatch in cases
where BUGTRACE recovers a link that was intentionally ig-
nored during manual inspection. That is, the two authors
who performed the manual inspection were to “identify the
methods modified (added, changed, or removed) to fix the
bug.” However, the patches for some bugs include modi-
fications to unit test methods, and BUGTRACE accurately
recovered from those patches links between the bug and the
unit test methods. Because such links could have been recov-
ered by the two authors, or filtered/ignored by BUGTRACE,
we classify them as a task mismatch.

4.3 Results

Rhino.

Table 1 lists the results for Rhino. Across the 12 ver-
sions of Rhino, BUGTRACE recovered an average of 8.33 links
per patch. Further, BUGTRACE recovered 866 links to 740
unique method signatures, and 600 of these links exactly
matched a link recovered via manual inspection. Columns 3
and 4 of Table 1b list the number of false negatives and false
positives in Ly, respectively. These results demonstrate that
BUGTRACE is accurate for the 104 Rhino bugs.

Columns 2 and 5 of Table 1b indicate unusually high num-
bers of false positives and false negatives in L; for the 45 bugs



Table 2: Eclipse Results

Version Bugs |Lj] |Ls| |La|  |Lal
3.0 13 53 88 48 45
3.0.1 12 25 44 19 31
3.0.2 6 11 12 11 1
3.1 18 106 260 94 178
3.1.1 15 29 46 27 21
3.1.2 12 24 44 19 30
3.2 16 71 138 65 79
3.2.1 20 77 117 68 58
3.2.2 19 70 181 68 115
3.3 20 310 704 301 412
3.3.1 19 36 81 24 69
3.3.2 14 50 7 48 31
3.4 19 91 146 55 127
Total 203 953 1,938 847 1,197

(a) High Level Comparison

in Rhino 1.5R4 and 1.5R5. The authors who recovered the
links in L; listed, for each recovered link, the bug ID and the
method signature, in which they included the method name
qualified by the name of one containing class. On the other
hand, for each recovered link, BUGTRACE lists the bug ID
and the complete method signature, including the fully qual-
ified method name. For example, for bug 49350 the equals
method of class ClassSignature, which is nested in class
JavaAdapter, is changed. In this case L; includes a link to
method JavaAdapter.ClassSignature.equals, whereas L;
includes a link to method ClassSignature.equals. Because
the method name used by the link in L; may be ambiguous,
we judge the link to be a false positive (and the missing
correct link is a false negative).

Modifications to methods in class BodyCodegen (in Rhino
1.5R5) resulted in several more false negatives being added
to L;. The source file Codegen. java contains two top-level
classes: Codegen (which has public visibility) and BodyCode-
gen (which has package visibility). All links recovered via
manual inspection for methods in Codegen. java list the con-
taining class as Codegen, but most of the modified methods
actually reside in class BodyCodegen (which BUGTRACE cor-
rectly notes). Misspellings/typos are a third common source
of human errors in L; for Rhino.

As described in Section 3.1, BUGTRACE can parse diffs
embedded in an issue report’s user comments. This func-
tionality is exercised by Rhino bugs 38384, 252122, 253323,
and 302501. In all cases BUGTRACE recovers correct links
from the embedded diffs.

Eclipse.

Table 2 lists the results for Eclipse. Across the 13 versions
of Eclipse, BUGTRACE recovered an average of 9.55 links per
patch. Further, BUGTRACE recovered 1,938 links to 1,926
unique method signatures, and 847 of these links exactly
matched a link recovered via manual inspection. Columns 3
and 4 of Table 2b list the number of false negatives and false
positives in L, respectively. As with the Rhino results, these
results demonstrate that BUGTRACE is accurate for the 203
Eclipse bugs.

BUGTRACE misses a traceability link (has a false nega-
tive) for bug 133738 due to the implementation decision de-
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Version |D0| ‘D1| ‘D2| |D3| |D4‘
3.0 4 1 0 33 7
3.0.1 2 4 0 11 14
3.0.2 0 0 0 1 0
3.1 12 0 0 46 120
3.1.1 0 2 1 4 14
3.1.2 3 2 0 4 21
3.2 4 2 0 28 45
3.2.1 9 0 0 36 13
3.2.2 2 0 0 12 101
3.3 7 2 0 91 312
3.3.1 12 0 0 44 13
3.3.2 2 0 0 4 25
3.4 36 0 0 40 51
Total 93 13 1 354 736

(b) Categorized Disagreements

scribed in Section 3.4. In particular, the method changed by
the patch is structured such that the last line contains both
a statement and the ‘{’ which closes the method body. The
patch adds new lines to the end of the method and moves the
‘{’ to its own line. The combination of the method’s struc-
ture, the new lines being added to the end of the method,
and our decision to exclude the last line of a method from
the line range computation causes BUGTRACE to miss the
change (and thus to miss the traceability link).

5. THREATS TO VALIDITY

Our study has limitations that impact the validity of our
findings, as well as our ability to generalize them. In this
section we describe some of these limitations and discuss
their impact on our study.

BUGTRACE relies on the accuracy of the bug metadata
stored in a Bugzilla repository. Unfortunately, issue tracking
repositories for open source projects are known to contain
incorrect metadata [3, 12, 29]. Our reliance on potentially
flawed metadata is a threat to the internal validity of our
study. This threat is shared by other studies that analyze
bugs by mining software repositories, (e.g., [8, 23, 26]).

Another threat to internal validity relates to the use of
patches to recover links between bugs and methods. For
example, a patch may include modifications unrelated to the
bug [6, 27]. However, we believe that patches are less likely
to exhibit this property than are the CVS commits used by
related approaches (e.g., [3, 5, 12, 14, 18, 29]). Thus, we
believe that our approach mitigates this threat in relation
to approaches that use CVS commits to recover links.

A third threat to internal validity arises from our approach
to identifying the correct CVS revision of an original file (i.e.,
the revision of a file containing the bug) during patch analy-
sis. BUGTRACE uses context lines from the patch to validate
the identified file revision, but few context lines are included
in each patch, and BUGTRACE may successfully validate an
incorrect revision of the file. However, our approach’s accu-
racy, as demonstrated by a comparison to human data and
as verified by manual inspection of any disagreements, sug-
gests that BUGTRACE’s validation process may be sufficient.



External validity is the degree to which general conclu-
sions can be drawn from our results. We studied two Java
projects, so we cannot generalize our results to projects im-
plemented in other languages. Moreover, both projects use
CVS for revision control and Bugzilla for issue tracking,
which may limit the applicability of our results to projects
using other repositories such as Subversion (for revision con-
trol) or Jira (for issue tracking).

6. RELATED WORK

Our work is closely related to research on automated trace-
ability link recovery and mining software repositories. Over-
views of these research areas are available. Spanoudakis and
Zisman [30] provide a roadmap for software traceability re-
search, while Cleland-Huang et al. [7] provide an overview of
best practices for automated traceability. Kagdi et al. [19]
provide an overview of approaches for mining software repos-
itories, and other work by Kagdi and his collaborators [20,
21] describes how software repositories support recovery of
traceability links.

As described in Section 1, there are many approaches to
merging data from revision control systems, such as CVS,
and issue tracking systems, such as Bugzilla. A common ap-
plication of this merged data is automatic recovery of trace-
ability links [3, 5, 12, 14, 18, 29]. Once recovered, these
links can be used to address a number of problems, includ-
ing: change impact analysis [4], defect modeling [12], defect
prediction [18], and experimental validation [23].

Many approaches have been proposed for automatic re-
covery of traceability links between source code and docu-
mentation. Antoniol et al. [2] address this problem using
a vector space model, and subsequent work by Marcus and
Maletic [24] substitutes LSI for the vector space model. De
Lucia et al. [11] add traceability link generation and manage-
ment to ADAMS [10], an process support system which em-
phasizes the artifact life cycle. Their extension to ADAMS
is based on LSI. More recent work by McMillan et al. [25]
combines textual and structural analysis to recover links in-
directly. In particular, McMillan et al. combine LSI and
JRipples, a structural analysis tool based on an evolving in-
teroperation graph (EIG) [28], to construct a traceability
link graphs (TLG) and to infer new traceability links from
the TLG.

Merging data from multiple software repositories is an-
other area of active research. Gall et al. [15] detect evolution
patterns in CVS repositories. Using module revision num-
bers, they assess growth, identify changes in behavior, and
detect common changes patterns across modules in object-
oriented programs. Ying et al. [31] mine change history to
detect logical couplings. They compute association rules
between files to predict future source code changes. Simi-
larly, Zimmerman et al. [32] describe an approach to detec-
tion of change couplings. They predict future source code
changes by detecting causal couplings between entities such
as classes, methods, or fields. German [16] retrieves and
analyzes “modification records” that fix bugs. He detects
co-changing files and identifies the developers most likely to
modify particular files. Finally, recent work by De Lucia
et al. [9] combines traceability information with information
retrieval to help developers improve the source code lexicon
for a project.
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7. CONCLUSIONS AND FUTURE WORK

‘We presented an automated approach to traceability link
recovery. Specifically, our approach merges data from a re-
vision control system and an issue tracking system and uses
the merged data to recover links between bugs and the meth-
ods modified to fix the bugs. We implemented our approach
as a tool, BUGTRACE, that mines and merges data from a
CVS repository and a Bugzilla repository. Further, we eval-
uated our approach by comparing links recovered by Buc-
TRACE to links recovered by two of the authors using manual
inspection. The results indicate that BUGTRACE produces
few false positives and few false negatives for the 307 bugs
in our test suite. We also noted limitations of our approach
and sources of human error that we discovered when verify-
ing our results.

Future work includes comparing the accuracy of BuG-
TRACE to the accuracy of tools that use identifiers present
in CVS log messages to recover missing traceability links.
Whereas BUGTRACE uses patches retrieved from Bugzilla
to recover traceability links, other approaches use deltas re-
trieved from CVS. A comparison of links recovered for fixed
bugs in Bpotn, by BUGTRACE and another tool would help to
determine how frequently the use of CVS commits increases
false positives (i.e., how frequently CVS commits include
changes unrelated to the bug). Other future work includes
an expanded study using projects implemented in multiple
programming languages.

Broader plans for future work include investigating mod-
els and tools for managing links between bugs and methods.
In addition, integrating research results related to program
differencing (e.g., [22]) could benefit our approach and oth-
ers like it. For example, the ability to reliably detect method
renamings from mined repository data would permit the
recovery of correct traceability links between the original
method and the renamed method. In turn, these new links
would improve the quality of models (such as defect predic-
tion models) that rely on rich traceability information.
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