New Features for Duplicate Bug Detection

Nathan Klein
Department of Computer Science
Oberlin College
Oberlin, Ohio, USA
nklein@oberlin.edu

ABSTRACT

Issue tracking software of large software projects receive a
large volume of issue reports each day. Each of these issues
is typically triaged by hand, a time consuming and error
prone task. Additionally, issue reporters lack the necessary
understanding to know whether their issue has previously
been reported. This leads to issue trackers containing a lot
of duplicate reports, adding complexity to the triaging task.
Duplicate bug report detection is designed to aid develop-
ers by automatically grouping bug reports concerning iden-
tical issues. Previous work by Alipour et al. has shown
that the textual, categorical, and contextual information of
an issue report are effective measures in duplicate bug re-
port detection. In our work, we extend previous work by
introducing a range of metrics based on the topic distribu-
tion of the issue reports, relying only on data taken directly
from bug reports. In particular, we introduce a novel met-
ric that measures the first shared topic between two topic-
document distributions. This paper details the evaluation
of this group of pair-based metrics with a range of machine
learning classifiers, using the same issues used by Alipour
et al. We demonstrate that the proposed metrics show a
significant improvement over previous work, and conclude
that the simple metrics we propose should be considered in
future studies on bug report deduplication, as well as for
more general natural language processing applications.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Management, Reliability

Keywords

Duplicate bug reports, topic model, machine learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

MSR’14, May 31 — June 1, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2863-0/14/05...$15.00
http://dx.doi.org/10.1145/2597073.2597090

324

Christopher S. Corley, Nicholas A. Kraft
Department of Computer Science
The University of Alabama
Tuscaloosa, Alabama, USA
cscorley@ua.edu, nkraft@cs.ua.edu

1. INTRODUCTION

Software projects with millions of users, such as the An-
droid Operating System, receive hundreds of bug reports ev-
ery day. Often, multiple bug reports concern the same issue,
since users frequently submit bug reports without checking
to see if their issue has been mentioned before (or fail to find
the relevant reports). Therefore, the automatic grouping of
bug reports which concern the same issue is a very helpful
tool, and is a topic that has recently received a good deal of
attention from researchers. In this paper we are interested
in accurately determining whether a pair of bug reports con-
cern the same issue or not, as this is generally the method
by which bug reports are deduplicated.

The sophistication of bug report duplicate detection has
increased rapidly over the past several years. Jalbert and
Weimer [6] used a term-frequency weighting scheme to cal-
culate description and title cosine similarity between bug
reports, and was able to automatically identify 8% of dupli-
cate reports from the Mozilla database. Nguyen et al. [9]
improved upon this model by combining LDA-based textual
comparison, information retrieval, and some categorical fea-
tures. A recent study by Alipour et al. [2] added contex-
tual data to aid in the creation of topics used by LDA and
showed an improvement over a method by Sun et al. [11],
using the Android repository as a case study. This study
follows the experimental set up of Alipour et al., where bug
reports in the repository are randomly paired together and
similarity metrics are computed to form data points. The
data is then given to a variety of machine learning classifiers
to create predictive models. Using a new suite of metrics,
our approach was able to predict the correct class of a data
point (duplicate or non-duplicate) over 95% of the time us-
ing ten-fold cross validation. The metrics proposed in this
study have an increase of an average of 8% in accuracy when
compared to Alipour et al.’s metrics, and do not require the
contextual word lists that Alipour et al.’s metrics do. This
allows our study to more easily be applied to a variety of
repositories. They show an increase of an average of 15%
in accuracy compared to Sun et al.’s metrics. Therefore, we
believe our suite of metrics can be used to improve state
of the art bug report deduplication efforts, and may have
applications to other areas of NLP research as well.

2. METHODOLOGY

Whereas Sun et al. [11] formulated the duplicate bug de-
tection problem as given a bug report, return a list of the
top-k most similar bug reports, like Alipour et al. [2], we for-
mulate the problem as given two bug reports, predict whether

they are duplicates. The latter problem formulation was first
used by Lo et al. [7]. As noted by a reviewer, the former
problem formulation is more challenging than the latter, be-
cause it is easier to differentiate between two random bug
reports and two duplicate bug reports than it is to differenti-
ate between two similar bug reports that are not duplicates
and two similar bug reports that are duplicates.

We used the data collected by Alipour et al., consisting of
reports pulled from the android database between Novem-
ber 2007 and September 2012. In the data set, 1,452 bug
reports were marked as duplicates out of 37,627 total. Ev-
ery bug report has the following features: Bug ID, Date
Opened, Status, Merge ID, Summary, Description, Com-
ponent, Type, Priority, and Version. Because few reports
specify a version, we ignored this final feature.

After collecting the data, groups of duplicate bug reports
were placed into buckets. 2,102 unique reports appeared
in these buckets. Then, we calculated the topic-document
distribution of each summary, description, and combined
summary and description for each report using the imple-
mentation of latent Dirichlet allocation (LDA) [4] in MAL-
LET [8]. LDA is a probabilistic generative model that cre-
ates a specified number of topics based on terms appearing
in the corpus, and then generates a topic distribution for
each document. LDA was introduced by Blei et al. [4] and
has subsequently been used in a variety of text retrieval ap-
plications. We used MALLET’s default LDA configurations:
an alpha value of 50.0 and a beta value of 0.01. We used a
100-topic model, a number suggested by Sun et al.’s results.

Following Alipour et al., we generated 20,000 pairs of bug
reports consisting of 20% duplicate pairs. To protect the
validity of our study, we ensured that no two pairs contained
identical reports.

For each pair, 13 attributes were computed. To stem
words for the simSumControl and simDesControl attributes,
we used the Porter stemmer [10]. We used the SEO suite
stopword list [1]. LDA distributions are sorted based on the
percentage each topic describes, in decreasing order. Table
1 lists the attributes used in the study, and Table 2 shows a
pair of duplicate bug reports from the Android data set.

Once all the pairs were created, we tested the predictive
power of a range of machine learning classifiers using the
Weka tool [5]. Tests were conducted using ten-fold cross-
validation. Following Alipour et al., we test the efficacy of a
machine learner using its accuracy, the AUC, or area under
the Receiver Operating Characteristic (ROC) curve, and its
Kappa statistic. The ROC curve plots the true positive rate
of a binary classifier against its false positive rate as the
threshold of discrimination changes, and therefore the AUC
is the probability that the classifier will rank a positive in-
stance higher than a negative instance. The Kappa statistic
is a measure of how closely the learned model fits the data
given. In this model, it signifies how closely the learned
model corresponds to the triagers which classified the bug
reports. We used the same machine learners as Alipour et
al., and added one additional learner, REPTree with Bag-
ging, or the Bootstrap Aggregating technique. Bagging
uses iterative training on multiple weighted training sets to
prevent overfitting.

The other algorithms used are ZeroR, Naive Bayes, Lo-
gistic Regression, C4.5, and K-NN. Note that the ZeroR
algorithm simply predicts the mode, and thus is a baseline
classifier. For the K-NN classifier, k£ was set to 7. For the

325

Table 1: Attributes for Pairs of Bug Reports

lenWordDiffSum | Difference in the number of words in

lenWordDiffDes the summaries or descriptions

simSumControl Number of shared words in the sum-

simDesControl maries or descriptions after stem-
ming and stop-word removal, con-
trolled by their lengths

sameTopicSum First shared identical topic between

sameTopicDes the sorted distribution given by

sameTopicTot LDA to each summary, description,
or combined summary and descrip-
tion

topicSimSum Hellinger distance between the topic

topicSimDes distributions given by LDA to each

topicSimTot summary, description, or combined
summary and description

priorityDiff {same-priority, not-same}

timeDiff Difference in minutes between the
times the bugs were submitted

sameComponent Four-category attribute: {both-null,
one-null, no-null-same, no-null-not-
same}

sameType {same-type, not-same}

class {dup, not-dup}

Table 2: Example Bug Reports

Attribute Bug 21196 Bug 20161

Submitted | oct 25 2011 | sep 19 2011
08:22:51 13:05:15

Status Duplicate Duplicate

MergelD 7402 7402

Summary support urdu in | urdu language
android support

Description | i just see many | hello i’m unable
description where | to read any type
people continu- | of urdu language
ously requesting | text messages.
google for sup- | please add urdu
port urdu in | language in fu-
andriod ... ture updates of

android ...

Component | Null Null

Type Defect Defect

Priority Medium Medium

C4.5 algorithm, a confidence factor of 0.025 was used. All
other models were set to their defaults in Weka. To compare
our results with Alipour et al.’s, we used their “Contextual,
categorical, and Labeled-LDA context’s data” results, which
have the highest average AUC over the five different contex-
tual word lists they tested. To evaluate the performance
of the Bagging: REPTree classifier we compared it to the
best-performing classifier in the group. Alipour et al. also
evaluated the metrics of Sun et al. [11] on this data set, and
therefore we will compare our results to Sun et al.’s metrics
as well. Finally, we evaluated the information gain of each
of our metrics to discover which might account for a change
in performance from Sun et al. and Alipour et al. The infor-

Table 3: Classification Results

Algorithm Accuracy % | AUC | Kappa
ZeroR 80.00% 0.500 | 0.00
Naive Bayes 92.990% 0.958 | 0.778
Logistic Regression 94.585% 0.972 | 0.824
C4.5 94.780% 0.941 | 0.832
K-NN 94.785 0.955 | 0.830
Bagging: REPTree | 95.170% 0.977 | 0.845

Table 4: Improvement over Alipour et al. [2]

Algorithm Accuracy | AUC Kappa
ZeroR 0% 0% 0%

Naive Bayes +16.741% | +21.57% | +121.78%
Logistic Regression | +7.33% +7.52% | +38.09%
C4.5 +2.90% +5.97% +10.15%
K-NN +3.59% +4.83% +9.77%
Bagging: REPTree | +3.33% +7.24% | +11.76%

Table 5: Improvement over Sun et al. [11]

Algorithm Accuracy | AUC Kappa
ZeroR 0% 0% 0%

Naive Bayes +18.27% | +23.14% | Undef.
Logistic Regression | +14.19% | +19.41% | +152.76%
C4.5 +12.13% | +31.42% | +92.41%
K-NN +15.06% | +29.58% | +79.81%
Bagging: REPTree | +12.59% | +25.58% | +83.06%

mation gain of a metric corresponds to the amount by which
it reduces the entropy of a set, such that when a decision
tree separates data based on a metric with high information
gain, the resulting sets have a much lower entropy than the
initial set, while separation on a metric with low information
gain yields sets with similar entropy. Therefore it is roughly
equivalent with how useful a metric is for splitting data in
decision tree learners like C4.5.

3. CASE STUDY

We applied these methods to the Android data set ob-
tained by Alipour et al. Table 3 details the accuracy, AUC,
and the Kappa statistic for each of the five classifiers we
used. Table 4 lists the percentage change of our accuracy,
AUC, and kappa values from Alipour et al.’s metrics, while
Table 5 lists the percentage change over Sun et al.’s metrics.
Note that when Undef. is listed under the Sun et al. com-
parison table, it refers to the comparison between a positive
value obtained by our study and a negative value from Sun
et al.’s metrics.

Because our metrics showed a significant improvement
over both those used by Alipour et al. and Sun et al., future
studies in duplicate bug detection should consider includ-
ing them. We then evaluated the information gain of each
metric using Weka. This is detailed in Table 6.

The information gain of the metrics using the first shared
topic to measure distance between topic-document distri-
butions is significantly higher than that of metrics using
Hellinger distance. Therefore, we hypothesize that this mea-
sure should be considered for use in a range of NLP applica-
tions. simSumControl has a high information gain as well,

326

Table 6: Information Gain of the Top Eight Metrics
sameTopicSum 0.330
sameTopicTot 0.321
topicSimSum 0.256
simSumControl 0.252
topicSimTot 0.209
sameTopicDes 0.203
topicSimDes 0.170
simDesControl 0.109

and may be a simple method with which to supplement or
replace tf-idf methods in some text retrieval applications.

4. THREATS TO VALIDITY

The primary threat to construct validity concerns the num-
ber of bugs marked as duplicate in the Android database. A
previous study showed an average of 36% of bug reports in
repositories are duplicates or invalid [3], yet of the reports
in the data, only 1,452 of 37,627 reports were marked as du-
plicate. In addition, some 10,000 reports in this time period
have not been processed yet and are still marked as “New.”
Many of these could actually be duplicates. A threat to in-
ternal validity concerns the selection of pairs. Because more
pairs are represented by large buckets of duplicates, there is
a selection bias towards bug reports in larger groups rather
than smaller ones.

5. CONCLUSION

The results of this paper demonstrate the descriptive power
of the suite of attributes we have proposed. We have shown
that they provide an increase in accuracy, AUC, and Kappa
statistics over the metrics of Alipour et al. [2] and Sun et
al. [11] when applied to the Android repository. However,
our study simply extends the analysis by Alipour et al.:
there is good reason to believe that the metrics used by
Alipour et al., when combined with ours, could further im-
prove duplicate bug detection.

The effectiveness and simplicity of the metrics proposed
in this study make them good candidates for futures studies
on duplicate bug reports. The practices of splitting the sum-
mary and description attributes when computing similarity,
a strategy used by Jalbert and Weimar [6], and of using the
first shared topic distance measure (which is, we believe, a
novel distance measure) are particularly recommended. Fi-
nally, the use of Bagging to aid in classification should be
considered, as it provided a small increase in accuracy.

A future study which utilized our metrics in order to find
duplicates of incoming bugs, using a top-k approach similar
to Sun et al. in which a fixed number of possible duplicate
reports are presented for each incoming report, would fur-
ther test their effectiveness. Our results suggest that this
suite of metrics could significantly improve state-of-the-art
top-k approaches to bug deduplication.

6. ACKNOWLEDGMENTS

We thank Alipour et al. for sharing the Android bug data
used in their study. This material is based upon work sup-
ported by the U.S. Department of Education under Grant
No. P200A100182 and by the National Science Foundation
under Grant No. 1156563.

7.
1]

2]

REFERENCES

Stop words, 2013.

http://www .link-assistant.com/seo-stop-words.html.
A. Alipour, A. Hindle, and E. Stroulia. A contextual
approach towards more accurate duplicate bug report
detection. In Proc. 10th Working Conf. on Mining
Software Repositories, pages 183-192, 2013.

J. Anvik, L. Hiew, and G. C. Murphy. Who should fix
this bug? In Proc. 28th Int’l Conf. on Software
Engineering, pages 361-370, 2006.

D. Blei, A. Ng, and M. Jordan. Latent Dirichlet
allocation. Journal of Machine Learning Research,
3:993-1022, Mar. 2003.

G. Holmes, A. Donkin, and I. H. Witten. Weka: A
machine learning workbench. In Proc. 2nd Australian
and New Zealand Conf. on Intelligent Information
Systems, pages 357-361, 1994.

N. Jalbert and W. Weimer. Automated duplicate
detection for bug tracking systems. In Proc. IEEE
Int’l Conf. on Dependable Systems and Networks,
pages 5261, 2008.

327

[7]

[8]

[10]

[11]

D. Lo, H. Cheng, and Lucia. Mining closed
discriminative dyadic sequential patterns. In Proc.
14th Int’l Conf. on Eztending Database Technology,
pages 21-32, 2011.

A. K. McCallum. MALLET: A machine learning for
language toolkit. http://mallet.cs.umass.edu, 2002.
A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo,
and C. Sun. Duplicate bug report detection with a
combination of information retrieval and topic
modeling. In Proc. 27th IEEE/ACM Int’l Conf. on
Automated Software Engineering, pages 70-79, 2012.
M. F. Porter. An algorithm for suffix stripping.
Program, 14(3):130-137, 1980.

C. Sun, D. Lo, S.-C. Khoo, and J. Jiang. Towards
more accurate retrieval of duplicate bug reports. In
Proc. of the 26th IEEE/ACM Int’l Conf. on
Automated Software Engineering, pages 253—262, 2011.

