
Modeling the Ownership of Source Code Topics
Christopher S. Corley, Elizabeth A. Kammer, Nicholas A. Kraft

Department of Computer Science
The University of Alabama
Tuscaloosa, AL 35487-0290

{cscorley,eakammer}@ua.edu, nkraft@cs.ua.edu

Abstract—Exploring linguistic topics in source code is a pro-
gram comprehension activity that shows promise in helping a
developer to become familiar with an unfamiliar software system.
Examining ownership in source code can reveal complementary
information, such as who to contact with questions regarding a
source code entity, but the relationship between linguistic topics
and ownership is an unexplored area. In this paper we combine
software repository mining and topic modeling to measure the
ownership of linguistic topics in source code. We conduct an
exploratory study of the relationship between linguistic topics
and ownership in source code using 10 open source Java systems.
We find that classes that belong to the same linguistic topic tend
to have similar ownership characteristics, which suggests that
conceptually related classes often share the same owner(s). We
also find that similar topics tend to share the same ownership
characteristics, which suggests that the same developers own
related topics.

Index Terms—program comprehension, mining software repos-
itories, ownership, topic modeling, pachinko allocation model.

I. INTRODUCTION

Program comprehension is a prerequisite to incremental
change. A software developer who is tasked with changing
a large software system spends effort on program compre-
hension activities to gain the knowledge needed to make the
change [1]. For example, the developer spends effort to under-
stand the system architecture or to locate the parts of the source
code that implement the feature(s) being changed. Gaining
such knowledge can be a time-consuming task, especially for
developers who are unfamiliar with the system. Linguistic
topics can help such developers to understand the system by
revealing a latent structure that is not obvious from the package
hierarchy or system documentation [2].

Linguistic topics are clusters of source code entities (e.g.,
classes) that are grouped by their natural language content
(i.e., the words in their identifiers, comments, and literals).
Such topics often correspond to the concepts and features
implemented by the source code [3], and exploring such
topics shows promise in helping developers to understand the
entities that make up a system and to understand how those
entities relate [2], [4]–[6]. Recent approaches to exploring
linguistic topics in source code use machine learning (ML)
techniques that model correlations among words, such as latent
semantic indexing (LSI) [7] and latent Dirichlet allocation
(LDA) [8], and ML techniques that also model correlations
among documents, such as RTM [9].

Linguistic topics in source code have many applications
in addition to general program comprehension. These ap-
plications include aspect mining [3] and traceability link
recovery [10]. Yet, while researchers have used the extrinsic
properties of topics in software engineering tasks, they have
not yet measured their intrinsic properties. We believe that
understanding these intrinsic properties will lead to a better
understanding of how topics are implemented and thus will
lead to a better understanding of how topics relate to each
other and to source code entities such as packages or classes.

Ownership is one measurable intrinsic property of a topic.
Ownership refers to whether a unit of development such
as a source code entity, component, or linguistic topic is
owned individually (i.e., by a single developer) or collectively
(i.e., by multiple developers) and is measured by the number
of changes made to the unit by each developer [11], [12].
Like exploring topics, examining ownership shows promise
in helping developers to understand how a system’s entities
relate [12], [13]. For example, a developer can examine own-
ership to determine whom to contact with questions regarding
the implementation of a topic.

In this paper we combine software repository mining and
topic modeling to measure the ownership of topics in source
code. We use the pachinko allocation model (PAM) [14] —
specifically, four-level PAM — to extract linguistic topics
from source code. Four-level PAM is a variant of LDA,
and we use it because it models correlations among topics
in addition to correlations among words. This allows us to
compare intrinsic properties of similar topics. For example, in
addition to asking questions about whether the classes in a
linguistic topic share ownership characteristics, we can also
ask questions about whether similar linguistic topics share
ownership characteristics.

This paper makes the following contributions:
• An approach to modeling and measuring the ownership

of linguistic topics in source code.
• A tool, ohm, that implements the approach for two

programming languages (Java and C#).
• An exploratory study of the relationship between linguis-

tic topics and ownership in source code.
We first review related work (§II). We next describe our

methodology (§III) and our case study (§IV), which spans 10
open source Java systems. We then conclude (§V).

978-1-4673-1216-5/12/$31.00 c© 2012 IEEE ICPC 2012, Passau, Germany173

II. BACKGROUND & RELATED WORK

In this section we review background and related work.

A. Modeling Ownership in Source Code

We first distinguish between authorship and ownership.
Authorship occurs when a developer writes a piece of code.
By contrast, ownership occurs when a developer commits a
new or changed piece of code to a source code repository.
Authorship does not imply ownership and vice-versa.

The literature provides examples of expertise with regard
to a piece of code being measured via development activity
on that code. Fritz et al. [15] find that a developer’s ability to
answer questions about a piece of source code is determined
by whether the developer has authored some of the code and
by how much time the developer spent authoring the code.
Further, Mockus and Herbsleb [16] present Expertise Browser,
and McDonald and Ackerman [17] present a similar tool. Both
tools recommend experts using measures of how much work
different developers have put forth on pieces of code.

Pinzger et al. [18] use ownership networks to find fault
prone binaries in Windows Vista. That is, they create networks
in which a node representing a developer is connected to all
binaries to which the developer has contributed and a node
representing a binary is connected to all developers who have
contributed to it. They apply social network metrics to these
networks and find a strong relationship between the metrics
and and post release failures. Bird et al. [19] later demonstrate
that these metrics can predict failures in Eclipse as well.

Bird et al. [12] further adapt the Pinzger et al. [18] study,
examining the effect of major and minor contributor edges.
They define a major contributor as a developer who owns at
least 5% of the changes to a software component. Similarly,
they define a minor contributor as a developer who owns
fewer than 5% of the changes to a software component.
They find that information about minor contributors is key to
defect prediction, because excluding minor contributor edges
significantly decreases prediction power.

Rahman and Devanbu [13] use the provenance features of
GIT to track the ownership of individual lines of source code.
They then study the impacts of ownership and experience on
software quality by comparing the ownership and experience
characteristics of “implicated code” (lines of code changed to
fix bugs) to those of “normal code.” Rahman and Devanbu [13]
report that strong ownership by a single developer is associated
with implicated code and that lack of specialized experience
on a particular file is associated with implicated code in that
file. Similarly, in earlier work Mockus and Weiss [11] find that
changes made by developers more experienced with a piece
of code are less likely to cause a failure.

B. Pachinko Allocation Model

Latent Dirichlet allocation (LDA) [8] is a generative topic
model. LDA models each document in a corpus of discrete
data as a finite mixture over a set of topics and models each
topic as an infinite mixture over a set of topic probabilities.

That is, LDA models each document as a probability distribu-
tion indicating the likelihood that it expresses each topic and
models each topic that it infers as a probability distribution
indicating the likelihood of a word from the corpus being
assigned to the topic. Yet, though LDA models correlations
among words, it does not model correlations among topics.

The pachinko allocation model (PAM) [14], [20] is a family
of generative topic models that build on LDA. PAM connects
words and topics with a directed acyclic graph (DAG), where
interior nodes represent topics and leaves represent words.
PAM allows an arbitrary DAG to model topic correlations,
but we use four-level PAM, in which the DAG is a four-level
hierarchy with one root topic, with topics at the second level,
with topics at the third level, and with words at the fourth level.
The topics at the second level are called supertopics, and the
topics at the third level are called subtopics. The DAG’s root
is connected to all supertopics, which are fully connected to
subtopics, which are fully connected to words.

Four-level PAM uses a bag-of-words representation in
which each document is a vector of counts with V components,
where V is the size of the vocabulary. Inputs include the
documents, the number of supertopics J , the number of
subtopics K, and two Dirichlet hyperparameters α (for topic
proportions) andβ (for topic multinomials). Given these inputs,
four-level PAM produces φ, the word-subtopic probability dis-
tribution, ψ, the subtopic-supertopic probability distribution,
and θ, the subtopic-document probability distribution, and ι,
the supertopic-document probability distribution. In particular,
the distribution of the ith subtopic over V words is φi, the
distribution of the jth supertopic over K subtopics is ψj , the
distribution of the kth document over K subtopics is θk, and
the distribution of the nth document over J supertopics is ιn.

The results produced by PAM are immediately interpretable.
We can examine φ to identify the most likely words in each
subtopic (that is, the words with the highest probability of
generating the subtopic) to determine the likely meaning of
the subtopic. Similarly, we can examine ψ to identify the most
likely subtopics in each supertopic — that is, the subtopics
most likely to cooccur. We can examine θ to identify the most
likely documents for each subtopic (that is, the documents with
the highest probability of expressing the subtopic) to determine
the likely members of the subtopic (i.e., the cluster). Similarly,
we can examine ι to identify the most likely documents
for each supertopic (that is, the documents with the highest
probability of expressing the supertopic) to determine the
likely members of the supertopic (i.e., the cluster of clusters).

In Table I we list an example four-level PAM-generated
subtopic for Vuze1, a bittorrent application. In particular, we
list the 20 words with the highest probability of belonging
to the subtopic. We can immediately interpret the results and
determine that the subtopic is related to managing a network
connection. In Table II we list the 10 classes with the highest
probability of expressing the subtopic. Clearly, the classes are
related to managing a network connection.

1http://vuze.com

174

TABLE I
TOP 20 WORDS IN A VUZE SUBTOPIC.

address port network inet tcp
socket udp proxy admin nat
host protocol bind local socks
addresses server interface exception http

TABLE II
TOP 10 CLASSES IN A VUZE SUBTOPIC.

core.networkmanager.admin.impl.NetworkAdminProtocolTester
core.networkmanager.admin.NetworkAdminASN
core.util.NetUtils
core.proxy.socks.impl.AESocksProxyAddressImpl
core.networkmanager.admin.NetworkAdminNATDevice
core.networkmanager.admin.NetworkAdminRoutesListener
core.networkmanager.admin.NetworkAdminProtocol
core.networkmanager.admin.NetworkAdminNetworkInterfaceAddress
net.natpmp.NatPMPDevice
core.networkmanager.admin.NetworkAdminNetworkInterface

C. Modeling Linguistic Topics in Source Code

Linstead et al. [21] use probabilistic Author-Topic (AT)
modeling [22], an extension of LDA that captures the rela-
tionship of authors to topics in addition to the relationship of
topics to documents, to extract the most likely authors for each
topic. Their work is closely related to our own, as we consider
the relationship between ownership and topics in source code.
However, authorship and ownership are distinct concepts, as
we describe in Section II-A. Further, Linstead et al. [21] use
bug reports to attribute authorship to a single version of Eclipse
(3.0), whereas we study ownership across the entire version
history of multiple projects. Linstead et al. conclude that AT
modeling produces “reasonable and interpretable automated
topics and author-topic assignments,” which they claim can
“provide a basis for comparing the similarity of developers
based on their contributions.”

Kuhn et al. [4] present early work on exploring linguistic
topics in source code, which they term semantic clustering.
They use LSI and clustering to group packages, classes, and
methods according to their linguistic similarities, where these
clusters represent the topics in the source code. Maskeri et
al. [5] identify topics in source code using LDA. However, the
authors consider topics to be clusters of related terms used,
rather than interpreting clusters as groups of linguistically
similar source artifacts, as Kuhn did.

In more recent work Savage et al. [2] and Gethers et al. [6]
use LDA and RTM, respectively, to explore linguistic topics
in source code. TopicXP [2] is a tool to visualize and search
linguistic topics at the package, class, or method level of
granularity. Similarly, CodeTopics [6] is a tool to visualize
the similarity between source code and high-level artifacts,
as well as the extent to which the source code covers topics
extracted from those high-level artifacts.

III. METHODOLOGY

In this section we provide an overview of our methodology.
We first describe the ownership model on which we base our
work. We then describe the process by which we mine the data
needed to build instances of this model. Next, we describe how
we build instances of our linguistic model from source code
and how we apply PAM to that model.

A. Ownership Model

Our methodology is based on the following ownership
model. A class is a source code entity that has a core
responsibility. Changes by developers can be traced to specific
classes. A developer who commits (to a Subversion repository)
a change to a class is a contributor to the class. A class c has
a set of contributors O(c) = {o1, . . . , om}. A system is a set
of classes C = {c1, . . . , cn}, and a system C has a set of
contributors:

O(C) =
⋃

c∈C
O(c)

The ownership profile for a class is a mathematical vector
of length |O(C)| that describes the frequency of changes to
the class by each contributor to the system. That is, each cell
in the vector corresponds to a contributor and contains the
number of changes made to the class by that contributor. For
example, consider class Foo in a system with five contributors.
Assume that Developer 1 has changed Foo twice, Developer 2
has changed Foo once, Developer 4 has changed Foo sixteen
times, and Developer 5 has changed Foo twelve times. The
ownership profile for Foo is the five dimensional vector: <
2, 1, 0, 16, 12 >.

The ownership profile for a linguistic topic (i.e., for a four-
level PAM subtopic) is a vector of length |O(C)|. It equals the
vector sum of the ownership profiles for the classes that belong
to the topic. That is, a linguistic topic is a cluster of classes,
each of which has an ownership profile. We sum those profiles
to model the ownership of the linguistic topic. For example,
consider a topic containing three classes in a system with
five contributors. Assume that the first class has ownership
profile < 4, 32, 9, 0, 0 >, the second class has ownership
profile < 0, 2, 0, 0, 0 >, and the third class has ownership
profile < 1, 0, 0, 2, 2 >. The ownership profile for the topic is
< 5, 34, 9, 2, 2 >.

Like Bird et al. [12] and Mockus & Weiss [11], we examine
the number of changes to an entity made by a developer
rather than the number of lines in an entity modified by a
developer. As Bird et al. [12] observed, each change represents
an exposure of the developer to the entity. Further, Elbaum
and Munson [23] found a strong correlation between change
frequency and change size, and Bird et al. [12] found similar
results for Windows.

B. Source Code Repository Mining

Figure 1 illustrates the class diagram for ohm, our repos-
itory mining tool. ohm mines a source code repository and
produces a database of ownership information. The Repository
class wraps the access to a Subversion or CVS repository;

175

Fig. 1. Class diagram for ohm.

in the current implementation it uses pysvn to access a
Subversion repository. Each Repository instance contains a
list of Patch instances (i.e., commits) that together constitute
the version history of the source code repository. Similarly,
a Patch is a list of Diff instances, and a Diff is a list of
Chunk instances. A Chunk represents a change and stores the
file name and the start/end line numbers for the change. The
Repository uses a JavaParser or CSharpParser to map each
Chunk to one or more Block objects. In particular, Repository
maps a Chunk to the innermost Block object that contains the
line range, as well as to each Block object which (directly or
indirectly) contains that innermost Block.

We build an ownership profile for each class in a software
system by mining the complete version history of the system,
from revision 1 to the HEAD revision. From each commit
record in the Subversion repository for the subject system,
we extract the name of the developer who made the commit
and the names of the classes changed by the commit. We add
this information to a database, and upon reaching the HEAD
revision, we have a complete ownership profile for each class
in the system. We adapt prior work [24] to map Subversion
change logs to the names of classes. Our approach and tool
are not specific to Subversion but are also compatible with
CVS. Further, our tool handles both Java and C# input.

We track entity renames to improve the accuracy of our
ownership profiles. Our algorithm for detecting renamed
blocks is a modification of Dig et al. [25]. The four differences
between our detection method and that of Dig are as follows:

1) Expanding on our previous work [24], we begin with
two sets: R, which contains the found “removed” blocks
from revision N , and A, which contains the found
“added” blocks from revision N + 1. Note that this
greatly reduces the number of pairwise comparisons.

2) We do not use the Shingles Encoding algorithm [26]
to compare two blocks for similarity. We compare two
blocks for similarity using a sequence matching tech-
nique provided by Python in the module difflib. The
algorithm, originally developed by Ratcliff and Met-
zener [27], finds all of the longest common subsequences
of the given two sequences. The comparison gives us a
similarity ratio in the range [0, 1]. This ratio is defined
as: ratio = (2 ∗ M)/T , where M is the number of
matches and T is the total number of elements in both

sequences. Note that this is 1.0 if the sequences are
identical, and 0.0 if they have nothing in common. For
example, strings “abcd” and “bcde” have similarity ratio
0.75, or (2 ∗ 3)/8.

3) We exploit our knowledge about the structure of the
blocks. There are two ways in which we compare blocks
in terms of sequences. First, if both bR and bA contain
three or more sub-blocks (e.g., a class that has three
methods), we use the sub-blocks as elements of each
respective block’s sequence. So, the sequence matcher
will return a ratio based on the number of common sub-
blocks. Second, if the first step finds that there are not
enough sub-blocks to meet the requirements, we use the
text of the blocks themselves. So, the sequence matcher
will return a ratio based on the number of common lines
(or strings).

4) After all comparisons between sets R and A are com-
plete, we accept only the pairs which have the highest
ratio. If there is a tie between two pairs, we will perform
a tiebreaker by applying the same sequence matching
technique to the names of the blocks to find the best
possible ratio (i.e., the name which is most similar).

Like Dig et al. [25], we find that thresholds of the ratio
between 0.5 and 0.7 produce the best results. Thus, we set the
threshold of ratio >= 0.6 in our case study.

We also address the aliasing problem [28], though we cur-
rently do so manually. The aliasing problem occurs when there
is not a one-to-one mapping between developers and Subver-
sion accounts. In our case study, we noted and accounted for
obvious aliases (e.g., fredsa and fredsa@google.com).
Future improvements to ohm will include the integration of a
state-of-the-art identity merge algorithm [29].

There are some potential practical problems with our ap-
proach to constructing ownership profiles. We give equal
weight to all commits, but in practice there are many kinds
of commits. For example, some commits include bug fixes,
while others include only license changes. Ideally, the former
kind of commit would be weighted differently than the latter.
We also do not consider specific development practices such
as branching and merging into the trunk [30].

176

C. Source Code Document Extraction

We use the following linguistic model. A word is the
basic unit of discrete data in a software lexicon and is a
sequence of letters. A token is a sequence of non-whitespace
characters containing one or more words. An entity is a named
source element such as a class, and an identifier is a token
representing the name of an entity. Comments and literals are
sequences of tokens delimited by language-specific markers
(e.g., /* */ and quotes). The document which corresponds to a
class is a sequence of words d = (w1, . . . , wm), and a corpus
is a set of documents (i.e., classes) D = (d1, . . . , dn).

The left side of Figure 2 illustrates the source code doc-
ument extraction process. A document extractor takes source
code as input and produces a corpus as output. Each document
in the corpus contains the words associated with a class. The
text extractor is the first part of the document extractor. It
parses the source code and produces a token stream for each
class. With regard to Java, we consider an interface or enum
name to be a class name. The preprocessor is the second part
of the document extractor. It applies a series of transformations
to each token and produces one or more words from the token.
The transformations [31], [32]:
• Splitting: separate tokens into constituent words based on

common coding style conventions (e.g., the use of camel
case or underscores) and on the presence of non-letters
(e.g., punctuation or digits)

• Normalizing: replace each upper case letter with the
corresponding lower case letter

• Filtering: remove common words such as articles (e.g.,
‘an’ or ‘the’), programming language keywords, standard
library entity names, or short words

We build a corpus from a single version of a software system.
In particular, for the study we present in this paper, we use
the HEAD revision of each subject system.

D. Topic Modeling

The right side of Fig 2 illustrates the topic modeling process.
A topic modeling tool takes a corpus as input and produces
linguistic topics (i.e., clusters) as output. We use Mallet2 for
topic modeling. Via analysis of the θ probability distribution
we cluster the classes in the corpus. In particular, Mallet
implements four-level PAM, which partitions documents (i.e.,
classes) into subtopics and supertopics. One of the outputs
is the θ probability distribution, which for each document in
the corpus lists the probability that the document belongs to
each subtopic. We extract clusters by assigning each document
to the subtopic to which it has the highest probability of
belonging. Thus, each cluster corresponds to a subtopic and
contains the classes most related to that subtopic. Not shown in
the figure, we use the ψ probability distribution and a similar
process to extract clusters of clusters. However, whereas we
assign each document to exactly one subtopic, we (potentially)
assign a subtopic to multiple supertopics. In particular, we
assign the top 10 most likely subtopics to each supertopic.

2http://mallet.cs.umass.edu

IV. CASE STUDY

In this section we describe the design of a case study in
which we explore the relationship between ownership and
linguistic topics in source code. We describe the case study
using the Goal-Question-Metric approach [33].

A. Definition and Context

Our goal is to understand the relationship between owner-
ship and linguistic topics in source code. The quality focus of
the study is on informing development decisions and policy
changes that could lead to software with fewer defects. The
perspective of the study is of a researcher, developer, or
project manager who wishes to gain understanding of the
concepts or features implemented in the source code and to
gain understanding of which developers are experts in these
concepts or features. The context of the study spans the version
histories of 10 open source Java systems.

Toward achievement of our goal, we pose the following
research questions:
RQ1: Do classes that belong to the same linguistic topic have

similar ownership characteristics?
RQ2: Do similar linguistic topics have similar ownership

characteristics?
Basically, we want to know whether contributors own topics
rather than just source code entities (i.e., classes). To answer
these questions we use our ownership model.

In the remainder of this section we introduce the subjects
of our study, describe the setting of our study, and report our
data collection and analysis procedures.

1) Subject software systems: The 10 subjects of our study
— Apache Ant3, ArgoUML4, CAROL5, Google Web Toolkit6

(GWT), iText7, JabRef8, jEdit9, JHotDraw10, Subversive11, and
Vuze— vary in size and application domain. Ant is a library
and command-line tool for managing builds, ArgoUML is
a UML modeling tool, CAROL is the common architecture
for RMI ObjectWeb layer, GWT is a development toolkit for
building browser-based applications, iText is a PDF manipu-
lation library, JabRef is an open source bibliography reference
manager, jEdit is a programmer’s text editor, JHotDraw is a
Java GUI framework, Subversive provides Subversion integra-
tion for Eclipse, and Vuze is a bittorrent client. Each system
is stored in a Subversion repository, and the developers of
each system use descriptive commit messages. Further, the
developers store bug reports in an issue tracker.

We mined ownership data from the version history of the
trunk of each system, from revision 1 to the HEAD revision.
Table III lists the HEAD revision at which we stopped mining

3http://ant.apache.org
4http://argouml.tigris.org
5http://carol.objectweb.org
6http://code.google.com/webtoolkit
7http://itext.org
8http://jabref.sourceforge.net
9http://jedit.org
10http://jhotdraw.org
11http://subversive.org

177

Source
Code

Document Extractor

Corpus

Document
Document

Document

Text Extractor

Preprocessor

Words

Tokens

Mallet

θ

Fig. 2. The source code document extraction and topic modeling processes.

TABLE III
MINED REVISIONS.

Ant ArgoUML CAROL GWT iText JabRef jEdit JHotDraw Subversive Vuze

HEAD revision 1175200 19740 2214 10666 4979 3677 20000 768 21043 26757
Trunk revisions 12,589 17,627 1,222 5,626 4,443 2,712 4,600 657 1,237 22,667
Contributors 45 48 29 123 14 34 33 10 5 41

TABLE IV
SUBJECT SOFTWARE SYSTEMS.

Ant ArgoUML CAROL GWT iText JabRef jEdit JHotDraw Subversive Vuze

SLOC 127,860 176,059 13,652 648,912 79,845 117,431 110,696 139,856 104,194 502,683
CLOC 99,903 149,591 16,507 316,122 58,328 37,469 46,357 111,874 25,379 120,936
Classes 1,574 2,259 271 9,258 611 959 1,050 1,861 1,439 3,929
Words 7,489 6,910 1,747 25,906 6,545 6,076 4,979 5,260 2,989 10,917

ownership data, the total number of trunk revisions mined, and
the total number of contributors. Table IV lists five size metrics
for the HEAD revision of each subject system: source lines
of code (SLOC), comment lines of code (CLOC), Java file
count, class count, and (unique) word count. The class count
includes named classes, interfaces, enums, and annotations.

2) Setting: To conduct the studies, we instantiate the pro-
cess described in Section III.

We implemented our document extractor in Python v2.6
using ANTLR v3 and an open source Java 1.5 grammar12. We
extract documents at the class level of granularity. We consider
every class to be distinct. That is, if class Bar is nested within
class Foo, each class is considered separately, and the text for
class Bar is not considered to be part of the text for class
Foo. We associate any comment that is contained in a class
with that class. Further, like Fluri et al. [34], we associate any
block comment (or series of line comments) that precedes a
class with that class.

12http://antlr.org/grammar/1152141644268/Java.g

Our document preprocessor implements the three transfor-
mations described in Section III-C. We filter java.lang
class names before splitting tokens. We split tokens based
on camel case, underscores, and non-letters. We normalize
to lower case before filtering English stop words [35], Java
keywords, and words shorter than three characters.

We set J=25 and K=50 for CAROL, iText, jEdit, and
JHotDraw, J=50 and K=100 for Ant, ArgoUML, JabRef, and
Subversive, and J=100 and K=200 for GWT and Vuze. We
empirically identified these values. Mallet v2.0 computes the
four-level PAM models. The number of iterations is set to
1000, providing a balance between execution time and model
convergence.

3) Data Collection and Analysis: We collected one owner-
ship profile for each class in each of the 10 subject systems.
We then used those ownership profiles to answer our two
research questions. First, we used four-level PAM to partition
the classes for each system into clusters (subtopics) and the
clusters for each system into clusters of clusters (supertopics).
To answer RQ1 we used cosine similarity to compare the own-
ership profiles for the classes in each subtopic. Specifically,

178

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ant ArgoUML CAROL GWT iText JabRef jEdit JHotDraw Subversive Vuze

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ant ArgoUML CAROL GWT iText JabRef jEdit JHotDraw Subversive Vuze

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ant ArgoUML CAROL GWT iText JabRef jEdit JHotDraw Subversive Vuze

Fig. 3. Random cluster ownership similarity.

for each system we computed the average of the pairwise
cosine similarity values for the classes in each subtopic.
So, if we computed 50 subtopics for a system then we
computed 50 average pairwise cosine similarity values for
that system. To answer RQ2 we computed an ownership
profile for each subtopic (see §III-A). We then used cosine
similarity to compare the ownership profiles for the subtopics
in each supertopic. Specifically, for each system we computed
the average of the pairwise cosine similarity values for the
subtopics in each supertopic. So, if we computed 25 super-
topics for a system then we computed 25 average pairwise
cosine similarity values for that system.

We also perform statistical analysis on our data. In partic-
ular, we use the Wilcoxon rank-sum test, a non-parametric
statistical hypothesis test. We executed the tests using R13.

B. Results

RQ1 asks whether classes that belong to the same linguis-
tic topic (four-level PAM subtopic) have similar ownership
characteristics. Before attempting to answer this question, we
first established a baseline against which to compare. That
is, to provide context for the answer to RQ1, we first gener-
ated random clusters of classes and measured the ownership
characteristics of those random clusters. Thus, in addition
to answering RQ1, we answer a closely related question:
Are the ownership characteristics of classes that belong to
the same linguistic topic more similar than the ownership
characteristics of classes that belong to a randomly generated
cluster? Figures 4 and 3 illustrate box plots that represent

13http://r-project.org

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ant ArgoUML CAROL GWT iText JabRef jEdit JHotDraw Subversive Vuze

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ant ArgoUML CAROL GWT iText JabRef jEdit JHotDraw Subversive Vuze

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ant ArgoUML CAROL GWT iText JabRef jEdit JHotDraw Subversive Vuze

Fig. 4. Subtopic ownership similarity.

statistics describing the average of the pairwise cosine similar-
ity values for the classes in each subtopic and random cluster,
respectively. For example, the box plot for Ant represents 50
average pairwise cosine similarity values — one for the classes
in each of the 50 subtopics (or random clusters) for Ant.

We used the Wilcoxon rank-sum test to determine whether
the difference in similarity is significant. The test revealed a
significant difference (p < 0.001) at the 95% significance level
(α = 0.05). Analogous tests for the 10 individual systems
also indicate statistically significant differences. Thus, the
answer to the question posed in the previous paragraph is
yes, the ownership characteristics of classes that belong to
the same linguistic topic are more similar than the ownership
characteristics of classes that belong to a randomly generated
cluster.

Again, RQ1 asks whether classes that belong to the same
linguistic topic (four-level PAM subtopic) have similar own-
ership characteristics. The box plots in Figure 4 indicate that
classes that belong to the same linguistic topic have similar
ownership characteristics for many, but not all, of the systems.
In particular, the median similarity values for 8 of the 10
subject systems are greater than 0.5. Though the median
similarity value for GWT (the largest system and the one
with the most contributors) is the lowest at less than 0.4, we
observe no general relationship between the similarity and the
size of the system or between the similarity and the number
of contributors.

RQ2 asks whether similar linguistic topics have similar
ownership characteristics. As with RQ1, before attempting to
answer this question, we first established a baseline against
which to compare. That is, to provide context for the answer

179

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ant ArgoUML CAROL GWT iText JabRef jEdit JHotDraw Subversive Vuze

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ant ArgoUML CAROL GWT iText JabRef jEdit JHotDraw Subversive Vuze

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ant ArgoUML CAROL GWT iText JabRef jEdit JHotDraw Subversive Vuze

Fig. 5. Supertopic ownership similarity.

to RQ2, we first generated random clusters of subtopics
and measured the ownership characteristics of those random
clusters. Thus, in addition to answering RQ2, we answer a
closely related question: Are the ownership characteristics of
subtopics that belong to the same supertopic more similar than
the ownership characteristics of subtopics that belong to a
randomly generated cluster of subtopics?

We used the Wilcoxon rank-sum test to determine whether
the difference in similarity is significant. The test revealed a
significant difference (p < 0.001) at the 95% significance level
(α = 0.05). Analogous tests for the 10 individual systems
also indicate statistically significant differences. Thus, the
answer to the question is yes, the ownership characteristics of
subtopics that belong to the same supertopic are more similar
than the ownership characteristics of subtopics that belong to
a randomly generated cluster of subtopics.

Again, RQ2 asks whether similar linguistic topics have
similar ownership characteristics. The box plots in Figure 5
indicate that similar linguistic topics have similar ownership
characteristics for most of the systems. In particular, the
median similarity values for 9 of the 10 subject systems are
greater than 0.5. As with RQ1, though the median similarity
value for GWT is the lowest at just under 0.5, we observe
no general relationship between the similarity and the size
of the system or between the similarity and the number of
contributors.

C. Threats to Validity

Our study has limitations that impact the validity of our
findings, as well as our ability to generalize them. We describe
some of these limitations and their impacts.

Threats to construct validity concern the adequacy of the
study procedure with regard to measurement of the concepts of
interest and can arise due to poor measurement design. Threats
to construct validity include the use of average pairwise cosine
similarity as our measure of similarity for topics/clusters.
Other possible measures of similarity include the distance
from the mean pairwise cosine similarity, but we think that
average pairwise cosine similarity better captures the concept
of interest.

Threats to internal validity include possible defects in our
tool chain and possible errors in our execution of the study
procedure, the presence of which might affect the accuracy
of our results and the conclusions we draw from them. We
controlled for these threats by testing our tool chain and by
assessing the quality of our data. Because we applied the same
tool chain to all subject systems, any errors are systematic and
are unlikely to affect our results substantially.

An additional threat to internal validity relates to several
subject systems having syntactically invalid Java files in their
version histories. Because we could not parse these files,
we could not mine ownership information for the classes
contained within them. However, since less than 1% of the
Java files that we encountered were syntactically invalid, these
files are unlikely to affect our results substantially.

Another threat to internal validity pertains to the values of
J and K that we selected for each subject system. These
values affect the composition of the clusters whose owner-
ship characteristics we measure. The literature provides no
guidance regarding the selection of these values for four-level
PAM, though Wei and Croft [36] suggest 50 to 300 topics
as good general purpose values for LDA (which is equivalent
to three-level PAM). Using these suggestions as a guide, we
built multiple four-level PAM models for each subject system.
We observed only negligible differences in our results, so we
chose the final J and K values for each system based on the
quality of the topics produced.

Threats to external validity concern the extent to which we
can generalize our results. The subjects of our study comprise
10 open source Java systems, so we cannot generalize our
results to systems implemented in other languages. However,
the systems are of different sizes, are from different domains,
and have characteristics in common with those of systems
developed in industry.

D. Discussion

We posed two research questions with the goal of under-
standing the relationship between ownership and linguistic
topics in source code. Specifically, we wanted to know whether
contributors own topics rather than just source code entities
such as classes. That is, we assume that it is typical for
a contributor to view a software system as a collection of
classes rather than as a collection of linguistic topics. Given
such a view, a contributor would be likely to own certain
classes. However, given that linguistic topics represent latent
relationships among classes in a system, a contributor might
also own topics (without explicit intention). Such ownership

180

characteristics would lend further evidence to support the
use of linguistic topics to understand a software system. In
particular, if ownership of a system is already partitioned
according to topics, we would have concrete evidence to
support the notion that topics represent concepts and features
implemented by the source code.

As noted by Baldi et al. [3], linguistic topics often cor-
respond to the concepts and features implemented by the
source code. In particular, Baldi et al. showed that topics
correspond to crosscutting features (i.e., aspects). So, potential
applications of our work include the easy identification of
experts on crosscutting features or even the reallocation of
development teams according to crosscutting features. Another
potential application of our work is to improve bug triaging.
That is, we could extract topics from a bug report and find the
corresponding expert developer.

The results for RQ1 generally support the notion that classes
that belong to the same linguistic topic have similar ownership
characteristics. However, the results are stronger for certain
systems than for others. Further, system characteristics such
as size or number of contributors do not seem to explain the
strength of the evidence. That is, consider the two systems with
the largest similarity: CAROL and iText, both of which have
similarity greater than 0.8. CAROL is an application, whereas
iText is a library. CAROL has twice as many contributors as
iText but also has half as many commits. In addition, CAROL
is much smaller than iText in terms of SLOC, CLOC, Files,
Classes, and Words.

Next, consider the two systems with the smallest similarity:
Ant and GWT, both of which have similarity less than 0.5.
Again, the two systems are from different domains, and GWT
has nearly three times as many contributors as Ant. GWT is
also much larger than Ant by all of our size measures. If
we instead examine systems of similar size, we still do not
see a trend emerge. For example, consider JabRef and jEdit,
which are of similar size and which have similar numbers
of contributors. The similarity for JabRef is greater than 0.7,
whereas the similarity for jEdit is 0.5.

Though the results for RQ1 generally support an answer of
“yes”, more investigation is needed to understand why certain
systems exhibit stronger evidence than others.

The results for RQ2 generally support the notion that
similar linguistic topics have similar ownership characteristics.
Indeed, the evidence for RQ2 is stronger than the evidence for
RQ1. However, like for RQ1, the results for RQ2 are stronger
for certain systems than for others. In addition, like for RQ1,
system characteristics such as size or number of contributors
do not seem to explain the strength of the evidence. Consider
the three systems with the largest similarity: iText, JabRef,
and Subversive, all of which have similarity greater than 0.8.
iText is a library, JabRef is an application, and Subversive is
an Eclipse plug-in. Though these three systems are those with
the fewest contributors, we note that the two systems with the
next largest similarity, Ant and ArgoUML, are those with the
most contributors (other than GWT). Thus, we do not believe
that number of contributors explains the amount of similarity.

Again, though the results for RQ2 generally support an
answer of “yes”, more investigation is needed to understand
why certain systems exhibit stronger evidence than others.

V. CONCLUSION

In this paper we combined software repository mining and
topic modeling to measure the ownership of linguistic topics
in source code. We used the pachinko allocation model (PAM)
— specifically, four-level PAM — to extract linguistic topics
from source code. Four-level PAM is a variant of LDA, and we
used it because it models correlations among topics in addition
to correlations among words. This allowed us to compare
properties of similar topics.

We addressed two research questions regarding the own-
ership of topics. First, we investigated whether classes that
belong to the same linguistic topic have similar ownership
characteristics. For 8 of our 10 subject systems we found
evidence that suggests that classes belonging to the same
topic do have similar ownership characteristics. However,
we observed no general relationship between the size of
the system and the amount of similarity or between the
number of contributors and the amount of similarity. Next,
we investigated whether similar linguistic topics have similar
ownership characteristics. For 9 of our 10 subject systems
we found evidence that suggests that similar topics do have
similar ownership characteristics. Further, we observed that
this evidence is stronger than the evidence for our first research
question. However, we again observed no general relationship
between the size of the system and the amount of similarity
or between the number of contributors and the amount of
similarity.

Future work includes expanding our study to include subject
systems implemented in languages other than Java. It seems
unlikely that our results are specific to Java systems, though
we cannot confirm this assumption without experimentation.
Additional future work includes an in-depth investigation of
the development processes of each subject system to help
understand why the topics in certain systems exhibit more
similarity (with regard to ownership characteristics) than do
others.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
comments and helpful suggestions. This material is based
upon work supported by the U.S. Department of Education
under Grant No. P200A100182 and by the National Science
Foundation under Grant Nos. 0851824 & 0915559.

REFERENCES

[1] T. Corbi, “Program understanding: challenge for the 1990’s,” IBM Syst.
J., vol. 28, no. 2, pp. 294–306, 1989.

[2] T. Savage, B. Dit, M. Gethers, and D. Poshyvanyk, “TopicXP: Exploring
topics in source code using latent Dirichlet allocation,” in Proc. of 26th
IEEE Int’l Conf. on Software Maintenance, 2010.

[3] P. Baldi, E. Linstead, C. Lopes, and S. Bajracharya, “A theory of aspects
as latent topics,” in Proc. of the ACM SIGPLAN Conf. on Object-
Oriented Programming, Systems, Languages, and Applications, 2008,
pp. 543–562.

181

[4] A. Kuhn, S. Ducasse, and T. Girba, “Semantic clustering: Identifying
topics in source code,” Information and Software Technology, vol. 49,
no. 2007, pp. 230–243, 2007.

[5] G. Maskeri, S. Sarkar, and K. Heafield, “Mining business topics in
source code using latent Dirichlet allocation,” in Proc. of the 1st India
Software Engineering Conference, 2008, pp. 113–120.

[6] M. Gethers, T. Savage, M. Di Penta, R. Oliveto, D. Poshyvanyk, and
A. De Lucia, “CodeTopics: Which topic am I coding now?” in Proc. of
the 33rd Int’l Conf. on Software Engineering, 2011, pp. 1034–1036.

[7] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and H. R., “Index-
ing by latent semantic analysis,” Journal of the American Society of
Information Science, pp. 391–407, 1990.

[8] D. Blei, A. Ng, and M. Jordan, “Latent Dirichlet allocation,” J. of
Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[9] J. Chang and D. Blei, “Hierarchical relational models for document
networks,” Annals of Appl. Stats, vol. 4, no. 1, pp. 124–150, 2010.

[10] H. Asuncion, A. Asuncion, and R. Taylor, “Software traceability with
topic modeling,” in Proc. of the 32nd Int’l Conf. on Software Engineer-
ing, 2010, pp. 95–104.

[11] A. Mockus and D. Weiss, “Predicting risk of software changes,” Bell
Labs Technical Journal, vol. 5, no. 2, pp. 169–180, 2000.

[12] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t
Touch My Code! Examining the Effects of Ownership on Software
Quality,” in Proc. of the ACM SIGSOFT Sym. on the Foundations of
Software Engineering, 2011.

[13] F. Rahman and P. Devanbu, “Ownership, experience and defects: a fine-
grained study of authorship,” in Proceeding of the 33rd Int’l Conf. on
Software Engineering, 2011, pp. 491–500.

[14] W. Li and A. McCallum, “Pachinko allocation: DAG-structured mixture
models of topic correlations,” in Proc. of the 23rd Int’l Conf. on Machine
Learning, 2006.

[15] T. Fritz, G. Murphy, and E. Hill, “Does a programmer’s activity indicate
knowledge of code?” in Proc. of the ACM SIGSOFT Sym. on the
Foundations of Software Engineering, 2007, pp. 341–350.

[16] A. Mockus and J. Herbsleb, “Expertise browser: a quantitative approach
to identifying expertise,” in Proc. of the 24th Int’l Conf. on Software
Engineering, 2002, pp. 503–512.

[17] D. McDonald and M. Ackerman, “Expertise recommender: A flexible
recomendation system and architecture,” in Proc. of the ACM Conf. on
Computer Supported Cooperative Work, 2000.

[18] M. Pinzger, N. Nagappan, and B. Murphy, “Can developer-module
networks predict failures?” in Proc. of the ACM SIGSOFT Sym. on the
Foundations of Software Engineering, 2008, pp. 2–12.

[19] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy, “Putting it
all together: Using socio-technical networks to predict failures,” in Proc.
of the 17th Int’l Sym. on Software Reliability Engineering, 2009.

[20] D. Mimno, W. Li, and A. McCallum, “Mixtures of hierarchical topics
with pachinko allocation,” in Proc. of the 24th Int’l Conf. on Machine
Learning, 2007.

[21] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi, “Mining
eclipse developer contributions via author-topic models,” in Proc. of the
Int’l Conf. on Software Engineering Workshops, 2007.

[22] M. Steyvers, P. Smyth, M. Rosen-Zvi, , and T. Griffiths, “Probabilistic
author-topic models for information discovery,” in Proc. of the 10th ACM
SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, 2004,
pp. 306–315.

[23] S. Elbaum and J. Munson, “Code churn: A measure for estimating
the impact of code change,” in Proc. of the Int’l Conf. on Software
Maintenance, 1998.

[24] C. Corley, N. Kraft, L. Etzkorn, and S. Lukins, “Recovering traceability
links between source code and fixed bugs via patch analysis,” in Proc.
of the 6th Int’l Wksp. on Traceability in Emerging Forms of Software
Engineering, 2011, pp. 31–37.

[25] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated
detection of refactorings in evolving components,” in ECOOP 2006
Object-Oriented Programming, ser. Lecture Notes in Computer Science,
D. Thomas, Ed. Springer Berlin / Heidelberg, 2006, vol. 4067, pp. 404–
428.

[26] A. Broder, “On resemblance and containment of documents,” in Proc.
of SEQUENCES, 1997.

[27] J. Ratcliff and D. Metzener, “Pattern matching: The gestalt approach,”
Dr. Dobb’s Journal, 1988. [Online]. Available: http://drdobbs.com/
database/184407970?pgno=5

[28] G. Robles and J. Gonzalez-Barahona, “Developer identification methods
for integrated data from various sources,” in Proc. of the Int’l Wksp. on
Mining Software Repositories, 2005.

[29] M. Göminne and T. Mens, “A comparison of identity merge algorithms
for software repositories,” Science of Computer Programming, 2011.

[30] C. Williams and J. Spacco, “Branching and merging in the repository,”
in Proc. of the Int’l Wksp. on Mining Software Repositories, 2008.

[31] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic, “An information
retrieval approach to concept location in source code,” in Proc. of the
11th Working Conf. on Reverse Engineering, 2004, pp. 214–223.

[32] A. Marcus and T. Menzies, “Software is data too,” in Proc. of the
FSE/SDP Wksp. on Future of Software Engineering Research, 2010,
pp. 229–232.

[33] V. Basili, G. Caldiera, and H. Rombach, “The goal question
metric approach,” 1994. [Online]. Available: ftp://ftp.cs.umd.edu/pub/
sel/papers/gqm.pdf

[34] B. Fluri, M. Wursch, and H. Gall, “Do code and comments co-
evolve? On the relation between source code and comment changes,” in
Proceedings of the 14th Working Conference on Reverse Engineering,
2007, pp. 70–79.

[35] C. Fox, “Lexical analysis and stoplists,” in Information Retrieval:
Data Structures and Algorithms, W. Frakes and R. Baeza-Yates, Eds.
Prentice-Hall, 1992.

[36] X. Wei and W. Croft, “LDA-based document models for ad-hoc re-
trieval,” in Proc. of ACM SIGIR, 2006.

182

