
Modeling Changeset Topics

Christopher S. Corley, Kelly L. Kashuda
The University of Alabama

Tuscaloosa, AL, USA
{cscorley, klkashuda}@ua.edu

Daniel S. May
Swarthmore College

Swarthmore, PA, USA
dmay1@swarthmore.edu

Nicholas A. Kraft
ABB Corporate Research

Raleigh, NC, USA
nicholas.a.kraft@us.abb.com

Abstract—Topic modeling has been applied to several areas of
software engineering, such as bug localization, feature location,
triaging change requests, and traceability link recovery. Many
of these approaches combine mining unstructured data, such
as bug reports, with topic modeling a snapshot (or release) of
source code. However, source code evolves, which causes models
to become obsolete. In this paper, we explore the approach of
topic modeling changesets over the traditional release approach.
We conduct an exploratory study of four open source systems.
We investigate the differences in corpora in each project, and
evaluate the topic distinctness of the models.

Keywords—Mining software repositories; changesets; topic
modeling; latent Dirichlet allocation

I. INTRODUCTION

Software developers are often confronted with maintenance
tasks that involve navigation of repositories that preserve vast
amounts of project history. Navigating these software reposito-
ries can be a time-consuming task, because their organization
can be difficult to understand. Fortunately, topic models such
as latent Dirichlet allocation (LDA) [1] can help developers to
navigate and understand software repositories by discovering
topics (word distributions) that reveal the thematic structure of
the data [2]–[4].

When modeling a source code repository, the corpus typi-
cally represents a snapshot of the code. That is, a topic model
is often trained on a corpus that contains documents that rep-
resent files from a particular version of the software. Keeping
such a model up-to-date is expensive, because the frequency
and scope of source code changes necessitate retraining the
model on the updated corpus. However, it may be possible
to automate certain maintenance tasks without a model of
the complete source code. For example, when assigning a
developer to a change task, a topic model can be used to
associate developers with topics that characterize their previous
changes. In this scenario, a model of the changesets created by
each developer may be more useful than a model of the files
changed by each developer. Moreover, as a typical changeset
is smaller than a typical file, a changeset-based model is less
expensive to keep current than a file-based model.

Toward the goal of automating software maintenance tasks
using changeset-based models, in this paper we qualitatively
compare topic models trained on corpora of changesets to those
trained on files. For our comparison we consider vocabulary
measures, which indicate whether term distributions in the
changeset corpora match those in the file corpora, and topic
distinctness [3], [5], [6], which measures how distinct one
topic in a model is from another. Models with higher topic
distinctness values are desirable, because distinct topics are

more useful in differentiating among the documents in a corpus
than are similar topics.

II. BACKGROUND & RELATED WORK

In this section we provide an overview of latent Dirichlet
allocation and review closely related work.

A. Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) [1] is a generative topic
model. LDA models each document in a corpus of discrete data
as a finite mixture over a set of topics and models each topic
as an infinite mixture over a set of topic probabilities. That
is, LDA models each document as a probability distribution
indicating the likelihood that it expresses each topic and
models each topic that it infers as a probability distribution
indicating the likelihood of a word from the corpus being
assigned to the topic.

B. Topic Models in Software Maintenance

Thomas et al. [3] describe an approach to modeling the
evolution of source code topics using LDA. Their Diff model
outperforms the Hall topic evolution model [7] in the context
of software repositories, because the Diff model trains topic
models on the changesets between two snapshots, rather than
on individual snapshots. That is, for a particular source code
file, Diff trains a topic model on a document that repre-
sent the changes between consecutive versions of the file.
Consequently, the Diff model eliminates the issues related to
data duplication that arise in the Hall model, which trains a
topic model on all versions of the (whole) file. Thomas et al.
demonstrate the efficacy of the Diff model via a comparative
study with the Hall model. Their evaluation measures include
topic distinctness, which we define in Section III.

Hindle et al. [4] validate the use LDA topics during
software maintenance via a study at Microsoft. Their focus
is on stakeholder validation of topics — i.e., they seek con-
firmation that LDA topics are interpretable by stakeholders
(e.g., developers or managers) and relevant to the requirements
implemented by the modeled source code. Previous work
by Hindle et al. [8] describes an approach to modeling the
evolution of software topics using commit messages rather than
source code.

Although our work is preliminary, we believe that it is the
first to consider modeling changesets in lieu of snapshots to
support software maintenance. Like Rao et al. [9], we are tar-
geting problems that require an up-to-date topic model. Thus,
the expense of training a topic model is a key consideration
for us, unlike for Thomas et al. [3] or Hindle et al. [4], [8].



TABLE I: Subject systems version and corpora description

Snapshot Commit Snapshot No. Changeset No. Snapshot No. Changeset No. Snapshot No. Changeset No.
System Version SHA Documents Documents Unique Terms Unique Terms Total Terms Total Terms

Ant 1.9.4 1c927b15 2208 12,996 17,986 74,681 1,066,446 11,801,353
AspectJ 1.8.0 5a5bef1e 10130 7,650 22,855 25,071 4,825,289 10,583,008
Joda-Time 2.3 b0fcbb95 402 1,750 9,298 11,385 493,131 5,541,330
PostgreSQL 9.3.4 d4f8dde3 4080 36,870 84,591 164,703 6,644,409 59,850,328

III. CASE STUDY

In this section we describe the design of a case study in
which we compare topic models trained on changesets to those
trained on snapshots. We describe the case study using the
Goal-Question-Metric approach [10].

A. Definition and Context

Our goal is to explore the relationship between changeset
topics and snapshot topics. The quality focus of the study is
on informing development decisions and policy changes that
could lead to software with fewer defects. The perspective of
the study is of a researcher, developer, or project manager
who wishes to gain understanding of the concepts or features
implemented in the source code. The context of the study spans
the version histories of four open source systems.

Toward achievement of our goal, we pose the following
research questions:

RQ1 Do changeset- and snapshot-based corpora express the
same terms?

RQ2 Are topic models trained on changesets more distinct
than topic models trained on a snapshot?

At a high level, we want to determine whether topic modeling
changesets can perform as well as, or better than, topic
modeling a snapshot.

In the remainder of this section we introduce the subjects
of our study, describe the setting of our study, and report our
data collection and analysis procedures.

B. Subject software systems

The four subjects of our study — Apache Ant1, AspectJ2,
Joda-Time3, and PostgreSQL4 — vary in language, size and
application domain. Ant is a library and command-line tool for
managing builds, AspectJ is an aspect-oriented programming
extension for the Java language, Joda-Time is a library for
replacing the Java standard library date and time classes,
and PostgreSQL is an object-relational database management
system. Each system is stored in a Git repository, and the
developers of each system use descriptive commit messages.
Further, the developers store bug reports in an issue tracker. All
systems are written in Java with the exception of PostgreSQL,
which is written in C. Table I outlines the releases for each
system studied.

1http://ant.apache.org/
2http://eclipse.org/aspectj/
3http://www.joda.org/joda-time/
4http://www.postgresql.org/

C. Setting

Our document extraction process is shown on the left side
of Figure 1. We implemented our document extractor in Python
v2.7 using the Dulwich library5. We extract documents from
both a snapshot of the repository at a tagged release and
each commit reachable from that tag’s commit. The same
preprocessing steps are employed on all documents extracted.

For our document extraction from a snapshot, we use the
entire contents of the document. We do not parse the source
code documents for classes, methods, and so on. We do this to
leave our technique language-independent, and to also allow
for a fair comparison between the two approaches.

To extract text from the changesets, we look at the output of
viewing the git diff between two commits. Figure 2 shows
an example of what a changeset might look like in Git. In our
changeset text extractor, we only extract text from removed or
added lines. Context and metadata lines are ignored. Note that
we do not consider where the text originates from, only that
it is text changed by the commit.

After extracting tokens, we split them based on camel
case, underscores, and non-letters. We normalize to lower
case before filtering non-letters, English stop words [11], Java
keywords, and words shorter than three characters long. We
do not stem words.

Our modeling generation is shown on the right side of
Figure 1. We implemented our modeling using the Python
library Gensim [12]. Gensim’s LDA implementation is based
on an Online LDA by Hoffman et al. [13] and uses variational
inference instead of a Collapsed Gibbs Sampler. Unlike Gibbs
sampling, in order to ensure that the model converges for
each document, we allow LDA to see each document 10
times by setting Gensim’s initialization parameter passes to
this value. We set the following LDA parameters for all four
systems: 100 topics (K), a symmetric α = 0.01, β is left as a
default value of 1/K (also 0.01).

D. Data Collection and Analysis

We create two corpora for each of our four subject systems.
We then used LDA to model the documents into topics.

To answer RQ1, we investigate the term frequency in each
corpus. We create two distributions from all unique terms from
both corpora. That is, each vector is of the same length and
contain zero values for terms not in its respective corpus. We
measure the similarity of the two word-vectors using cosine
distance.

5http://www.samba.org/∼jelmer/dulwich/



Source
Code

Repository

Release Corpus

Document
DocumentFile-based 

Document

Changeset Corpus

Document
DocumentDiff-based 

Document

LDA

LDA Changeset 
ɸ

Release 
ɸ

Document 
Extraction

Text Extractor

Preprocessor

Words

Tokens

Fig. 1: Extraction and Modeling Process

diff --git a/lao b/tzu
index 635ef2c..5af88a8 100644
--- a/lao
+++ b/tzu
@@ -1,7 +1,6 @@
-The Way that can be told of is not the eternal Way;
-The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;

-The Named is the mother of all things.
+The named is the mother of all things.
+
Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,
@@ -9,3 +8,6 @@ And let there always be being,
The two are the same,
But after they are produced,
they have different names.

+They both may be called deep and profound.
+Deeper and more profound,
+The door of all subtleties!

Fig. 2: Example of a git diff. Black or blue lines denote
metadata about the change useful for patching, red lines
(beginning with a single -) denote line removals, and green
lines (beginning with a single +) denote line additions.

To answer RQ2, we follow Thomas et al. [3] and use topic
distinctness to evaluate our topic models. Distinct topics are
topics with dissimilar word probabilities to all other topics in
the model. Using this metric will also allow a comparison to
the results of Thomas et al. [3]. Topic distinctness has also been
shown to be an effective measure for qualitative comparison
of topic models in context of visualization [5], [6]. Although
Chang et al. [14] conclude that evaluating topic models should
depend on real-world tasks over metrics, we argue that the
positive results from using topic distinctness for visualization
techniques qualifies the metric for this exploratory study.

Thomas et al. define topic distinctness (TD) of a topic zi
as the mean Kullback-Leibler (KL) divergence between the
vectors zi and zj , ∀j 6= i:

TD(φzi) =
1

K − 1

K∑
j=1,j 6=i

KL(φzi , φzj ) (1)

We score the overall topic distinctness of a model φ as the
mean of its topic distinctness scores, ∀z ∈ φ.

E. Results

RQ1 asks whether a corpus generated from changesets
have similar terms as a corpus generated from a snapshot.
We expected to find that set of unique terms in the change-
set corpus to be a superset of the set of unique terms in
the snapshot corpus. Interestingly, this holds true for Joda-
Time and AspectJ, but not for Ant and PostgreSQL. Further
inspection shows that 2 terms appear in the Ant snapshot
corpus that do not appear in the changeset corpus, and 19
terms appear in PostgreSQL’s respective corpora. However,
these anomalies appear to have been file encoding errors that
had been introduced into the version history and resolved
before the release. For example, one of the terms for Ant was
“rapha”. This is due to an encoding error in the KEYS file for
a developer named “Raphaël Luta”. Similar encoding errors
were found for the remaining 20 terms.

To answer RQ1, we created two word distributions that
represented the unique terms from both corpora for each
system. Figure 3a shows the normalized distribution of the Ant
snapshot corpus. Likewise, Figure 3b shows the distribution of
the Ant changeset corpus. We measure the differences between
the two distributions using cosine distance. For Ant, we had
the lowest cosine distance of 0.00396. AspectJ and Joda-Time
have similar distances to another of 0.06929 and 0.06540.
PostgreSQL had the largest, 0.33957.

RQ2 asks if topic models trained on changeset corpora
produce more distinct topics. We expected to find that they
would, due to “popular” words becoming more prevalent in
the corpus after appearing in several changes. Interestingly,
this is true for Ant and PostgreSQL, but not for Joda-Time and
AspectJ. We hypothesize this is because Ant and PostgreSQL
have drastically more documents in their respective change set
corpora than Joda-Time and AspectJ. That is, we think that the
feasibility of using changeset topics is somewhat dependent on
the amount of history in the repository.

We can compare to the results of Thomas et al. [3], as we
were able to run our study on PostgreSQL6. We find similar
topic distinctness scores for PostgreSQL in our study, even
though we consider a later version of the source code. This
suggests that our approach is feasible, as it captures distinct

6We were not able to run this study on their other subject system, JHotDraw,
as no official Git mirror of the repository is available.



(a) Normalized distribution of the snapshot corpus (b) Normalized distribution of the changeset corpus

Fig. 3: Comparison of Ant word distributions

topics while not needing post-processing and is always up-to-
date with the source code repository.

TABLE II: Comparison of topic distinctness scores (RQ2)

System Snapshot TD Changeset TD

Ant 2.31 3.17
AspectJ 3.75 2.78
Joda-Time 1.34 1.03
PostgreSQL 2.59 3.56

IV. THREATS TO VALIDITY

Our study has limitations that impact the validity of our
findings, as well as our ability to generalize them. We describe
some of these limitations and their impacts.

Threats to construct validity concern the adequacy of the
study procedure with regard to measurement of the concepts of
interest and can arise due to poor measurement design. Threats
to construct validity include the use of cosine similarity as
our measure of similarity for corpora and the use of topic
distinctness to evaluate the topic models.

Threats to internal validity include possible defects in our
tool chain and possible errors in our execution of the study
procedure, the presence of which might affect the accuracy
of our results and the conclusions we draw from them. We
controlled for these threats by testing our tool chain and by
assessing the quality of our data. Because we applied the same
tool chain to all subject systems, any errors are systematic and
are unlikely to affect our results substantially.

Another threat to internal validity pertains to the value of
K that we selected for all models trained. We decided that
the changeset and snapshot models should have the same K
to help facilitate evaluation and comparison.

Threats to external validity concern the extent to which
we can generalize our results. The subjects of our study
comprise four open source systems in two languages, so we
cannot generalize our results to systems implemented in other

languages. However, the systems are of different sizes, are
from different domains, and have characteristics in common
with those of systems developed in industry.

V. CONCLUSION

In this paper conducted an exploratory study on modeling
the topics of changesets. We used latent Dirichlet allocation
(LDA) to extract linguistic topics from changesets and snap-
shots (releases).

We addressed two research questions regarding the topic
modeling of changesets. First, we investigated whether change-
set copora were any different than traditional snapshot corpora,
and what differences there might be. For two of the systems,
we found that the changeset vocabulary was a superset to the
snapshot vocabulary. We measured the cosine distance of each
distribution of words, and found for 3 of the systems low
(between 0.003 to 0.07), while the last was much higher than
the others (over 0.33). Next, we investigated whether a topic
model trained on a changeset corpus was more or less distinct
than a topic model trained on a snapshot corpus. For 2 of the
4 systems, we found that the changeset corpus produced more
distinct topics, while for the other 2 it did not.

Future work includes expanding our evaluation and con-
ducting an experiment where we utilize these topic models,
such as for bug localization. Additional future work includes
expanding our study to other systems, particularly ones that
are not Java. It seems unlikely that our results are specific
to Java systems, though we cannot confirm this assumption
without experimentation. This expansion should also include
an investigation into why some changeset topic models are
more distinct than others.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
comments and helpful suggestions. This material is based
upon work supported by the U.S. Department of Education
under Grant No. P200A100182 and by the National Science
Foundation under Grant No. 1156563.



REFERENCES

[1] D. Blei, A. Ng, and M. Jordan, “Latent Dirichlet allocation,” Journal
of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[2] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi, “Mining
eclipse developer contributions via author-topic models,” in Proc. Int’l
Wksp. on Mining Software Repositories, 2007, p. 30.

[3] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Modeling
the evolution of topics in source code histories,” in Proc. 8th Working
Conf. on Mining Software Repositories, 2011, pp. 173–182.

[4] A. Hindle, C. Bird, T. Zimmerman, and N. Nagappan, “Relating
requirements to implementation via topic analysis: Do topics extracted
from requirements make sense to managers and developers?” in Proc.
28th IEEE Int’l Conf. on Software Maintenance, 2012, pp. 243–252.

[5] F. Wei, S. Liu, Y. Song, S. Pan, M. X. Zhou, W. Qian, L. Shi, L. Tan,
and Q. Zhang, “TIARA: a visual exploratory text analytic system,” in
Proc. 16th ACM SIGKDD Int’l Conf. on Knowledge Discovery and
Data Mining, 2010, pp. 153–162.

[6] J. Chuang, C. D. Manning, and J. Heer, “Termite: Visualization tech-
niques for assessing textual topic models,” in Proc. Int’l Working Conf.
on Advanced Visual Interfaces, 2012, pp. 74–77.

[7] D. Hall, D. Jurafsky, and C. Manning, “Studying the history of ideas
using topic models,” in Proc. Conf. on Empirical Methods in Natural
Language Processing, 2008, pp. 363–371.

[8] A. Hindle, M. W. Godfrey, and R. C. Holt, “What’s hot and what’s
not: Windowed developer topic analysis,” in Proc. IEEE Int’l Conf. on
Software Maintenance, 2009, pp. 339–348.

[9] S. Rao and A. Kak, “Retrieval from software libraries for
bug localization: A comparative study of generic and composite
text models,” in Proceedings of the 8th Working Conference
on Mining Software Repositories, ser. MSR ’11. New York,
NY, USA: ACM, 2011, pp. 43–52. [Online]. Available: http:
//doi.acm.org/10.1145/1985441.1985451

[10] V. Basili, G. Caldiera, and H. Rombach, “The goal question
metric approach,” 1994. [Online]. Available: ftp://ftp.cs.umd.edu/pub/
sel/papers/gqm.pdf

[11] C. Fox, “Lexical analysis and stoplists,” in Information Retrieval:
Data Structures and Algorithms, W. Frakes and R. Baeza-Yates, Eds.
Prentice-Hall, 1992.

[12] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in Proc. of the LREC 2010 Wksp. on New
Challenges for NLP Frameworks.

[13] M. D. Hoffman, D. M. Blei, and F. R. Bach, “Online learning for latent
Dirichlet allocation,” in Proc. 25th Annual Conf. on Neural Information
Processing Systems, 2010, pp. 856–864.

[14] J. Chang, S. Gerrish, C. Wang, J. L. Boyd-graber, and D. M. Blei,
“Reading tea leaves: How humans interpret topic models,” in Advances
in neural information processing systems, 2009, pp. 288–296.


