
Modeling Changeset Topics for Feature Location
Christopher S. Corley, Kelly L. Kashuda

The University of Alabama
Tuscaloosa, AL, USA

{cscorley, klkashuda}@ua.edu

Nicholas A. Kraft
ABB Corporate Research

Raleigh, NC, USA
nicholas.a.kraft@us.abb.com

Abstract—Feature location is a program comprehension activ-
ity in which a developer inspects source code to locate the classes
or methods that implement a feature of interest. Many feature
location techniques (FLTs) are based on text retrieval models, and
in such FLTs it is typical for the models to be trained on source
code snapshots. However, source code evolution leads to model
obsolescence and thus to the need to retrain the model from
the latest snapshot. In this paper, we introduce a topic-modeling-
based FLT in which the model is built incrementally from source
code history. By training an online learning algorithm using
changesets, the FLT maintains an up-to-date model without
incurring the non-trivial computational cost associated with
retraining traditional FLTs. Overall, we studied over 600 defects
and features from 4 open-source Java projects. We also present
a historical simulation that demonstrates how the FLT performs
as a project evolves. Our results indicate that the accuracy of a
changeset-based FLT is similar to that of a snapshot-based FLT,
but without the retraining costs.

Index Terms—program comprehension; feature location; topic
modeling; mining software repositories; changesets

I. INTRODUCTION

Feature location is a frequent and fundamental activity for a
developer tasked with changing a software system. Whether a
change task involves adding, modifying, or removing a feature,
a developer cannot complete the task without first locating
the source code that implements the feature. The state-of-the-
practice in feature location is to use an IDE tool based on
keyword or regex search, but Ko et al. [1] observed such tools
leading developers to failed searches nearly 90% of the time.

The state-of-the-art in feature location [2] is to use a feature
location technique (FLT) based, at least in part, on text retrieval
(TR). The standard methodology [3] is to extract a document
for each class or method in a source code snapshot, to train a
TR model on those documents, and to create an index of the
documents from the trained model. Topics models (TMs) [4]
such as latent Dirichlet allocation (LDA) [5] are the state-of-the-
art in TR and outperform vector-space models (VSMs) in the
contexts of natural language [5], [6] and source code [7], [8].
Yet, modern TMs such as online LDA [9] natively support only
the online addition of a new document, whereas VSMs also
natively support online modification or removal of an existing
document. So, TM-based FLTs provide the best accuracy,
but unlike VSM-based FLTs, they require computationally-
expensive retraining subsequent to source code changes.

Rao [10] proposed FLTs based on customizations of LDA
and latent semantic indexing (LSI) that support online modifi-
cation and removal. These FLTs require less-frequent retraining

than other TM-based FLTs, but the remaining cost of periodic
retraining inhibits their application to large software, and the
reliance on customization hinders their extension to new TMs.

We envision an FLT that is: (1) accurate like a TM-based
FLT, (2) inexpensive to update like a VSM-based FLT, and
(3) extensible to accommodate any off-the-shelf TR model that
supports online addition of a new document. Unfortunately,
our vision is incompatible with the standard methodology for
FLTs. Existing VSM-based FLTs fail to satisfy the first criteria,
and existing TM-based FLTs fail to satisfy the second or third
criteria. Indeed, given the current state-of-the-art in TR, it is
impossible for a FLT to satisfy all three criteria while following
the standard methodology.

In this paper we propose a new methodology for FLTs. Our
methodology is to extract a document for each changeset in the
source code history and to train a TR model on the changeset
documents, and then to extract a document for each class or
method in a source code snapshot and to create an index of the
class/method documents from the trained (changeset) model.
This new methodology stems from four key observations:
• Like a class/method definition, a changeset has program text.
• Unlike a class/method definition, a changeset is immutable.
• A changeset corresponds to a commit.
• An atomic commit involves a single feature.
It follows from the first two observations that it is possible
for an FLT following our methodology to satisfy all three
of the criteria above. The next two observations influence the
training and indexing steps of our methodology, which have the
conceptual effect of relating classes (or methods) to changeset
topics. By contrast, the training and indexing steps of the
standard methodology have the conceptual effect of relating
classes to class topics (or methods to method topics).

To evaluate the new methodology, we used it to implement
FLTs based on online LSI and online LDA. We next used
two benchmarks to compare the accuracy of these FLTs
to the accuracy of analogous FLTs following the standard
methodology. Combined, the two benchmarks comprise over
600 defects and features from 4 open-source Java projects
with both method- and class-level goldsets. Our evaluation
results provide evidence that our new methodology is sound
and that following it yields FLTs with similar accuracy to those
following the standard methodology, but without the retraining
costs.

The remainder of the paper is organized as follows. We first
review background and related work (§II) We next present

978-1-4673-7532-0/15 c© 2015 IEEE ICSME 2015, Bremen, Germany

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

71

our new methodology for FLTs (§III) and report evaluation
results for the online-LDA-based FLT (§IV). We then conclude
(§VII).

II. BACKGROUND & RELATED WORK

In this section, we review the standard methodology for
document extraction and retrieval process used by snapshot-
based FLTs, as well as related work on topic modeling and
feature location.

A. Document Extraction and Retrieval Process

We use the following terminology to describe document
extraction of a source code snapshot. A word is the basic unit
of discrete data in a software lexicon and is a sequence of letters.
A token is a sequence of non-whitespace characters containing
one or more words. An entity is a named source element such
as a method, and an identifier is a token representing the name
of an entity. Comments and literals are sequences of tokens
delimited by language-specific markers (e.g., /* */ and quotes).
The document which corresponds to an entity is a sequence of
words d = (w1, . . . , wm), and a corpus is a set of documents
(e.g., methods) D = (d1, . . . , dn).

The left side of Figure 1a illustrates the document extraction
process. A document extractor takes a source code snapshot
as input and produces a corpus as output. Each document in
the corpus contains the words associated with a source code
entity, such as a class or method. The text extractor is the first
part of the document extractor and parses the source code to
produce a token stream for each document. The preprocessor
is the second part of the document extractor. It applies a series
of transformations to each token and produces one or more
words from the token. The transformations commonly used
are [3], [11], [12]:
• Splitting: separate tokens into constituent words based on

common coding style conventions (e.g., the use of camel
case or underscores) and on the presence of non-letters
(e.g., punctuation or digits)

• Normalizing: replace each upper case letter with the
corresponding lower case letter

• Filtering: remove common words such as articles (e.g.,
‘an’ or ‘the’), programming language keywords, standard
library entity names, or short words

The right side of Figure 1a illustrates the retrieval process.
The main prerequisite of the retrieval process is to build the
search engine. The search engine is constructed from a topic
model trained from a corpus and an index of that corpus inferred
from that model. This means that an index is no more than
each input document’s thematic structure (i.e., the document’s
inferred topic distribution).

The primary function of the search engine is to rank
documents in relation to the query [13]. First, when using
a TM-based approach, the engine must first infer the thematic
structure of the query. This allows for a pairwise classification
of the query to each document in the index and ranks the
documents based on the similarities of their thematic structures.

B. Latent Dirichlet Allocation

LDA [5] is a generative topic model. LDA models each
document in a corpus of discrete data as a finite mixture over
a set of topics and models each topic as an infinite mixture
over a set of topic probabilities. That is, LDA models each
document as a probability distribution indicating the likelihood
that it expresses each topic and models each topic that it infers
as a probability distribution indicating the likelihood of a word
from the corpus being assigned to the topic.

Hoffman et al. [9] introduce online LDA, an online version
of LDA. Online LDA allows the model to be updated incre-
mentally without needing to know about the documents prior
to model construction. Zhai and Boyd-Graber [14] introduce
an extension of LDA in which the model also does not need
to know about the corpus vocabulary prior to training. Teh
et al. [15] introduce an LDA counterpart, the Hierarchical
Dirichlet process (HDP), that learns the appropriate number of
topics from the data, rather than needing configuration. Further,
Wang et al. [16] further extend HDP to bring the algorithm
online.

C. Feature Location

Feature location is the act of identifying the source code
entity or entities that implement a feature [17]. Dit et al. [2]
provide a taxonomy and survey of feature location in source
code covering the scope of FLTs. They identify 89 works
related to feature location in their systematic literature survey
and extract 7 dimensions for their taxonomy. The primary
dimension, type of analysis, can be used for categorization
purposes and consists of four categories: dynamic, static,
historical, and textual. Our methodology uses historical analysis
(e.g., [18]) and textual analysis (e.g., [3]).

The most relevant FLTs, by Rao [10], [19], are described in
the introduction. Other closely related work involves LSI-based
FLTs [3], [18], [20]–[23] or LDA-based FLTs [8], [24]–[26].

D. Modeling Software Repositories

Our work is also not the first to investigate ways to employ
topic models on software repositories. Thomas et al. [27]
present a study on how topics of a software project evolve over
time. They present the Diff model, and closely resembles our
work. However, their Diff model is much more coarse-grained
and trains a topic model on changesets between two software
snapshots, not changesets between two commits. Additionally,
their goal in using this model is for modeling the evolution of
topics, not for feature location.

Hindle et al. [28] present a technique that relates commits to
requirements documents using LDA. They apply LDA to extract
topics from issue reports, requirements documents, and commit
messages. Their linking process relies on LDA inferencing to
derive the topics of unseen documents. Hindle et al. [29] use
a similar approach. Our methodology is based on the same
inferencing concept and creates an index of source code entities
from learned changeset topics.

72

Document Extractor

 Topic Modeler

Topic
Model

Rankings
1.
2.
3.

Query

Snapshot Corpus

Document
DocumentCode-based

Document

Search Engine

Snapshot

Text Extractor

Preprocessor

Tokens

Terms

Indexer Index

(a) Topic-modeling-based feature location technique using snapshots

Document Extractor

Snapshot Corpus

Document
DocumentCode-based

Document

Source
Code

Repository

Changeset Corpus

Document
DocumentDiff-based

Document

Text Extractor

Preprocessor

Tokens

Terms

 Topic Modeler

Topic
Model

Rankings
1.
2.
3.

QuerySearch Engine

Indexer Index

(b) Topic-modeling-based feature location technique using changesets

Fig. 1: Two feature location techniques side-by-side

III. MODELING CHANGESET TOPICS

In this section we describe how a TM-based FLT can use
changesets.

A. Terminology

In addition to the terminology described in Section II, we use
the following terminology to describe the document extraction
and retrieval process of changesets.

A diff is a set of text which represents the differences
between two texts. A patch is a set of instructions (i.e., diffs)
that is used to transform one set of texts into another. Context
lines denote text useful for transforming the text, but do not
represent the differences. Added lines are lines which were
added in order to transform the first text into the second.
Similarly, removed lines are lines which are removed for this
same purpose. A changeset, ideally, represents a single feature
modification, addition, or deletion, which may crosscut many
source code entities. A commit is a representation of a changeset
in a version control system, such as Git or Subversion. Figure 2
shows an example changeset from Git.

B. Feature location using changesets

The overall difference in our methodology and the standard
methodology described in Section II-A is minimal. For example,
compare Figures 1a and 1b. In the changeset approach, we
only need to replace the documents on which the topic model

is trained while the remainder of the approach remains the
same.

The changeset approach requires two types of document
extraction: the snapshot of the state of source code at a commit
of interest, such as a tagged release, and every changeset
in the source code history leading up to the same commit of
interest. The left side of Figure 1b illustrates the dual-document
extraction approach.

The document extraction process for the snapshot remains
the same as covered in Section II while the document extractor
for the changesets parses each changeset for the removed,
added, and context lines. From there, each line is tokenized by
the text extractor. The same preprocessor transformations as
before occur in both the snapshot and changesets. The snapshot
vocabulary is always a subset of the changeset vocabulary [30].

The right side of Figure 1b illustrates the retrieval process.
The key intuition to our methodology is that a topic model such
as LDA or LSI can infer any document’s topic proportions
regardless of the documents used to train the model. In fact, this
is also what determining the topic proportions of a user-created
query relies on. Likewise, so are other unseen documents.
In our approach, the seen documents are changesets and the
unseen documents are the source code entities of the snapshot.

Hence, we train a topic model on the changeset corpus
and use the model to index the snapshot corpus. Note that
we never construct an index of the changeset documents on

73

diff --git a/src/java/net/sf/jabref/EntryEditor.java b/src/java/net/sf/jabref/EntryEditor.java
index 8c56723..6b4788e 100644
--- a/src/java/net/sf/jabref/EntryEditor.java
+++ b/src/java/net/sf/jabref/EntryEditor.java
@@ -669,7 +669,8 @@ public class EntryEditor extends JPanel implements VetoableChangeListener {

public void storeCurrentEdit() {
Component comp = Globals.focusListener.getFocused();
if ((comp == source) || ((comp instanceof FieldEditor) && this.isAncestorOf(comp))) {

- ((FieldEditor)comp).clearAutoCompleteSuggestion();
+ if (comp instanceof FieldEditor)
+ ((FieldEditor)comp).clearAutoCompleteSuggestion();

storeFieldAction.actionPerformed(new ActionEvent(comp, 0, ""));
}

}

Fig. 2: Example of a git diff. This changeset addresses JabRef’s Issue #2904968. Black or blue lines denote metadata about the change
useful for patching. In particular, black lines represent context lines (beginning with a single space). Red lines (beginning with a single -)
denote line removals, and green lines (beginning with a single +) denote line additions.

which the model is trained, nor do we use the snapshot corpus
during training. In our approach, we only use the changesets to
continuously update the topic model and only use the snapshot
for indexing.

To leverage the online functionality of the topic models, we
can also intermix the model training, indexing, and retrieval
steps. First, we initialize a model in online mode. Then,
as changes are made, the model is updated with the new
changesets as they are committed. That is, with changesets, we
incrementally update a model and can query it at any moment.
Our historical simulation (§ IV-C) relies on this insight.

C. Why Changesets?

We choose to train the model on changesets, rather than
another source of information, because they also represent
what we are primarily interested in: program features. A single
changeset provides text of an addition, removal, or modification
of a single feature. A developer can to some degree comprehend
what a changeset accomplishes by examining it, such as during
a code review, much like examining a source file directly.

While a snapshot corpus has documents that represent a
program, a changeset corpus has documents that represent
programming. If we consider every changeset affecting a
particular source code entity, then we gain a sliding-window
view of that source code entity over time and the contexts
those changes were performed in. This is akin to summarizing
code snippets with machine learning [31], where in our case
a changeset gives a snippet-like view of the code required to
complete a task. For example, in Figure 2, we can see the entire
method being changed when the context lines are considered.

Additionally, Vasa et al. [32] observe that code rarely changes
as software evolves. The implication is that the topic modeler
will see changesets containing the same source code entity
only a few times, perhaps only once. Since topic modeling a
snapshot only sees an entity once, topic modeling a changeset
can miss no information.

Using changesets also implies that the topic model may
gain some noisy information from these additional documents,
especially removals. However, Vasa et al. also observe that

code is less likely to be removed than it is to be changed. This
implies that the noisy information would likely remain in both
snapshot-based models and changeset-based models.

Indeed, it appears desirable to remove changesets from the
model that are old and no longer relevant to the current snapshot
of the system. There would be no need for this because online
LDA already contains features for increasing the influence
newer documents have on the model, thereby decaying the
effect of the older documents on the model.

IV. STUDY

In this section we describe the design of a study in which
we compare our new methodology with the current practice.
We describe the case study using the Goal-Question-Metric
approach [33]. We discuss the results of using LDA as our topic
modeler, and exclude the LSI discussion for brevity. Further,
the data and source code for the full case study is available in
this paper’s online appendix1.

A. Definition and Context

Our goal is to evaluate the effectiveness of TM-based FLTs
trained on changesets. The quality focus of the study is on
informing development decisions and policy changes that could
lead to software with fewer defects. The perspective of the study
is of a researcher, developer, or project manager who wishes
to gain understanding of the concepts or features implemented
in the source code. The context of the study spans the version
histories of 14 open source systems.

Toward the achievement of our goal, we pose the following
research questions:
RQ1 Is a changeset-based FLT as accurate as a snapshot-

based FLT?
With our new methodology, we also gain the opportunity to

simulate how the FLT would perform in a real development
environment, an evaluation technique not previously feasible
due to the run-time of the experiment.
RQ2 Does the accuracy of a changeset-based FLT fluctuate

as a project evolves?

1 http://christop.club/publications/data/Corley-etal_2015

74

TABLE I: Subject Systems and Goldset Sizes

Subject System Features Classes Methods

ArgoUML v0.22 91 287 701
ArgoUML v0.24 52 154 357
ArgoUML v0.26.2 209 706 1560
Jabref v2.6 39 131 280
jEdit v4.3 150 361 748
muCommander v0.8.5 92 303 717

Total 633 1942 4363

At a high level, our goal is to determine the feasibility of
using changesets to train topic models for feature location,
especially in realistic development scenarios.

In the remainder of this section we introduce the subjects of
our study, describe the setting of our study, our data collection
and analysis procedures, and report the results of the study
using LDA.

B. Subject Software Systems

Each of our subject software systems come from two
publicly-available datasets. The first is a dataset of six software
systems by Dit et al. [34] and contains method-level goldsets.
This dataset was automatically extracted from changesets that
relate to the queries (issue reports). The second is a dataset of
14 software systems by Moreno et al. [35] and contains class-
level goldsets. The six software systems in the first dataset
also appear in the second, supplying us with both class- and
method-level goldsets for the queries. We only consider the
systems where the datasets overlap.

ArgoUML is a UML diagramming tool2. jEdit is a text
editor3. JabRef is a BibTeX bibliography management tool4.
muCommander is a cross-platform file manager5.

C. Methodology

For snapshots, the process is straightforward and corresponds
to Figure 1a. First, we train a model on the snapshot corpus
using batch training. That is, the model can see all documents in
the corpus at once. Then, we infer an index of topic distributions
with the snapshot corpus. For each query in the dataset, we
infer the query’s topic distribution and rank each entity in the
index with pairwise comparisons.

In terms of changesets, the process varies slightly from a
snapshot approach, as shown in Figure 1b. First, we train a
model on the changeset corpus using batch training. Second, we
infer an index of topic distributions with the snapshot corpus.
Note that we do not infer topic distributions with the changeset
corpus on which the model was built. Finally, for each query
in the dataset, we infer the query’s topic distribution and rank
each entity in the snapshot index with pairwise comparisons.

For the historical simulation, we take a slightly different
approach. We first determine which commits relate to each

2 http://argouml.tigris.org/ 3 http://www.jedit.org/
4 http://jabref.sourceforge.net/ 5 http://www.mucommander.com/

query (or issue) and partition mini-batches out of the changesets.
We then proceed by initializing a model for online training.
Using each mini-batch, or partition, we update the model. Then,
we infer an index of topic distributions with the snapshot corpus
at the commit the partition ends on. We also obtain a topic
distribution for each query related to the commit. For each
query, we infer the query’s topic distribution and rank each
entity in the snapshot index with pairwise comparisons. Finally,
we continue by updating the model with the next mini-batch.

Since the Dit et al. dataset was extracted from the commit
that implemented the change, our partitioning is inclusive of
that commit. That is, we update the model with the linked
commit and infer the snapshot index from that commit. This
allows our evaluations to capture any entities added to address
the issue report, as well as changed entities, but does not
capture any entities that were removed by the change.

D. Setting

Our document extraction process is shown on the left side of
Figure 1b. We implemented our document extractor in Python
v2.7 using the Dulwich library6 for interacting with the source
code repository and Teaser7 for parsing source code. We extract
documents from both a snapshot of the repository at a tagged
snapshot and each commit reachable from that tag’s commit.
The same preprocessing steps are employed on all extracted
documents.

For our document extraction from a snapshot, we first parse
each Java file using our tool, Teaser, which is a text extractor
implemented in Java using an open source Java 1.5 grammar
and ANTLR v3. The tool extracts documents from the chosen
source code entity type, either methods or classes. We consider
interfaces, enumerations, and annotation types to also be a
class. The text of inner an entity (e.g., a method inside an
anonymous class) is only attributed to that entity, and not the
containing one. Comments, literals, and identifiers within a
entity are considered as text of the entity. Block comments
immediately preceding an entity are also included in this text.

To extract text from the changesets, we look at the git
diff between two commits. In our changeset text extractor,
we extract all text related to the change, e.g., context, removed,
and added lines; metadata lines are ignored. Note that we do
not consider where the text originates from, only that it is text
changed by the commit.

After extracting tokens, we split the tokens based on camel
case, underscores, and non-letters. We only keep the split
tokens; original tokens are discarded. We normalize to lower
case before filtering non-letters, English stop words [36], Java
keywords, and words shorter than three characters long. We
do not stem words.

We implemented our modeling using the Python library
Gensim [37], version 0.10.3. We use the same configurations
on each subject system. We do not try to adjust parameters
between the different systems to attempt to find a better, or best,
solution; rather, we leave them the same to reduce confounding

6 http://www.samba.org/~jelmer/dulwich/ 7 https://github.com/nkraft/teaser

75

variables. We do realize that this may lead to topic models
that may not be best-suited for feature location on a particular
subject system. However, this constraint gives us confidence
that the measurements collected are fair and that the results
are not influenced by selective parameter tweaking. Again, our
goal is to show the performance of the changeset-based FLT
against snapshot-based FLT under the same conditions.

Gensim’s LDA implementation is based on an online LDA
by Hoffman et al. [9] and uses variational inference instead of
a collapsed Gibbs sampler. Unlike Gibbs sampling, in order
to ensure that the model converges for each document, we
allow LDA to see each mini-batch 5 times by setting Gensim’s
initialization parameter passes to this value and allowing
the inference step 1000 iterations over a document. We set
the following LDA parameters for all 6 systems: 500 topics, a
symmetric α = 1/K, and a symmetric η = 1/K. These are
default values for α and η in Gensim, and have been found to
work well for the FLT task [25].

For the historical simulation, we found it beneficial to
consider two other parameters: κ and τ0. As noted in Hoffman
et al. [9], it is beneficial to adjust κ and τ0 to higher values for
smaller mini-batches. These two parameters control how much
influence a new mini-batch has on the model when training.
We follow the recommendations in Hoffman et al. choosing
τ0 = 1024 and κ = 0.9 for all systems, because the historical
simulation often has mini-batch sizes in single digits.

E. Data Collection and Analysis

To evaluate the performance of a TM-based FLT we cannot
use measures such as precision and recall. This is because
the FLT creates the rankings pairwise, causing every entity
being searched to appear in the rankings. Poshyvanyk et al.
define an effectiveness measure that can be used for TM-based
FLTs [7]. The effectiveness measure is the rank of the first
relevant document and represents the number of source code
entities a developer would have to view before reaching a
relevant one. The effectiveness measure allows evaluating the
FLT by using the mean reciprocal rank (MRR) [38]:

MRR =
1

|Q|

|Q|∑
i=1

1

ei
(1)

where Q is the set of queries and ei is the effectiveness measure
for some query Qi.

To answer RQ1, we run the experiment on the snapshot
and changeset corpora as outlined in Section IV-C. We then
calculate the MRR between the two sets of effectiveness
measures. We use the Wilcoxon signed-rank test with Holm
correction to determine the statistical significance of the
difference between the two rankings. To answer RQ2, we
run the historical simulation as outlined in Section IV-C and
compare it to the results of batch changesets from RQ1. Again,
we calculate the MRR and use the Wilcoxon signed-rank test.

F. Results

RQ1 asks how well a topic model trained on changesets
performs against one trained on source code entities. Table II

TABLE II: RQ1: MRR and p-values of class-level Batch

Subject System Snapshot Changeset p-value

ArgoUML v0.22 0.059154 0.099735 p < 0.01

ArgoUML v0.24 0.168083 0.188884 p = 0.013930

ArgoUML v0.26.2 0.186212 0.144408 p < 0.01

JabRef v2.6 0.292574 0.190469 p = 0.501962

jEdit v4.3 0.268085 0.173586 p = 0.019540

muCommander v0.8.5 0.276343 0.183420 p = 0.011480

All 0.205412 0.157036 p < 0.01

TABLE III: RQ1: MRR and p-values of method-level Batch

Subject System Snapshot Changeset p-value

ArgoUML v0.22 0.038286 0.064189 p = 0.268417

ArgoUML v0.24 0.068024 0.064706 p = 0.699388

ArgoUML v0.26.2 0.077683 0.055174 p = 0.445880

JabRef v2.6 0.069135 0.081123 p = 0.076284

jEdit v4.3 0.039041 0.068860 p = 0.078042

muCommander v0.8.5 0.038749 0.050925 p = 0.160519

All 0.055945 0.061465 p = 0.067154

and Table III summarize the results of each subject system
when evaluated at the class and method granularity, respectively.
In each of the tables, we bold which of the two MRRs is greater.
Since our goal is to show that training with changesets is just
as good, or better than, training on snapshots, we only care
about statistical significance when the MRR is in favor of
snapshots.

For LDA at the class-level we note an improvement in MRR
for 2 of the 6 systems when using changesets. Additionally,
1 of these 2 systems were statistically significant at p < 0.01.
Only 1 of the 4 systems with MRR in favor of snapshots were
statistically significant. Hence, changeset topics perform just
as well as snapshot topics at the class-level 5 of the 6 times.

For LDA at the method-level we note an improvement in
MRR for 4 of the 6 systems when using changesets. None of
these were statistically significant at p < 0.01. This suggests
that changeset topics are as accurate as snapshot topics at
the method-level, especially since there is a lack of statistical
significance for any of the cases.

RQ1: Changeset-based FLTs are as accurate as snapshot-
based FLTs.

RQ2 asks how well a simulation of using a topic model
would perform as it were to be used in real-time. This is a
much closer evaluation of an FLT to it being used in an actual
development environment. Table IV and Table V summarize
the results of each subject system when evaluated at the class
and method granularity, respectively. In each of the tables, we
bold which of the two MRRs is greater. Again, since our goal is
to show that temporal considerations must be given during FLT

76

TABLE IV: RQ2: MRR and p-values of class-level Temporal

Subject System Batch Temporal p-value

ArgoUML v0.22 0.099735 0.121756 p = 0.280057

ArgoUML v0.24 0.188884 0.182267 p = 0.449599

ArgoUML v0.26.2 0.149223 0.157971 p < 0.01

JabRef v2.6 0.203930 0.232776 p < 0.01

jEdit v4.3 0.174738 0.219397 p < 0.01

muCommander v0.8.5 0.185228 0.261738 p < 0.01

All 0.159593 0.189059 p < 0.01

TABLE V: RQ2: MRR and p-values of method-level Temporal

Subject System Batch Temporal p-value

ArgoUML v0.22 0.065629 0.054402 p = 0.025760

ArgoUML v0.24 0.063462 0.087268 p = 0.025119

ArgoUML v0.26.2 0.059563 0.072729 p = 0.127751

JabRef v2.6 0.101983 0.064746 p = 0.069284

jEdit v4.3 0.068859 0.071710 p = 0.466658

muCommander v0.8.5 0.052569 0.066859 p < 0.01

All 0.064204 0.069749 p < 0.01

evaluation, we only care about statistical significance when the
MRR is in favor of batch.

At the class-level we note an improvement in MRR for
5 of the 6 systems with 4 of these 5 statistically significant
at p < 0.01. The one result in favor of batch changesets,
for ArgoUML v0.24, was not statistically significant. A the
method-level we note an improvement in MRR for 4 of the 6
systems with 2 of the 4 statistically significant at p < 0.01.

RQ2: Historical simulation reveals that the accuracy of
the changeset-based FLT is consistent as a project evolves
and is actually higher than indicated by batch evaluation.

V. DISCUSSION

The results outlined in the previous section warrants some
qualitative discussion. In particular, our analysis shows signifi-
cant affects between snapshots and changesets, and between
batch changesets and changesets in the simulated environment.
The results are mixed between each and are not conclusive.
However, we argue this is desirable to show that the accuracy
of a changeset-based FLT is similar to that of a snapshot-based
FLT but without the retraining cost.

A. RQ1

Figure 3 shows the effectiveness measures for methods and
classes across all systems. The figure suggests that snapshot-
based models and changeset-based models have similar results
overall with changesets performing slightly better, but does not
help to understand how each feature query performs for each
model. With respect to RQ1, we will investigate the queries
and effectiveness measures between the batch snapshot and
batch changesets in detail.

For the 632 successful queries of classes, each query returns
the same effectiveness measure 28 out of 632 times, or about
4.4% of the time. Of these 28, 17 of them all return an
effectiveness measure of 1 (the best possible measure). For 159
queries (25.2%), the effectiveness measure is within 10 ranks of
each other. For 291 queries (46.0%), the effectiveness measure
is within 50 ranks of each other. The remaining 341 queries
(53.9%) perform noticeably different (> 50 ranks apart).

For the 629 successful queries of methods, each query returns
the same effectiveness measure 12 out of 629 times, or about
1.9% of the time. Of these 12, 7 return an effectiveness measure
of 1 (the best possible measure). For 65 queries (10.3%), the
effectiveness measure is within 10 ranks of each other. For 151
queries (24.0%), the effectiveness measure is within 50 ranks
of each other. The remaining 478 queries (75.9%) perform
noticeably different (> 50 ranks apart).

B. RQ2

Figure 3 also shows the effectiveness measures for methods
and classes across the 6 systems considered in RQ2. The figure
shows that the historical simulation outperforms both batch
evaluations, but does not help to understand how each feature
query performs for each model. With respect to RQ2, we will
investigate the queries and effectiveness measures between the
historical simulation and the batch evaluations in detail.

For the 603 successful queries of classes, each query returns
the same effectiveness measure 8 out of 603 times, or about
1.3% of the time. Of these 8, 7 return an effectiveness measure
of 1 (the best possible measure). For 111 queries (18.4%), the
effectiveness measure is within 10 ranks of each other. For 230
queries (38.1%), the effectiveness measure is within 50 ranks
of each other. The remaining 373 queries (61.8%) perform
noticeably different (> 50 ranks apart).

For the 595 successful queries of methods, each query returns
the same effectiveness measure 3 out of 595 times, or about
0.5% of the time. Of these 3, all return an effectiveness measure
of 1 (the best possible measure). For 23 queries (3.9%), the
effectiveness measure is within 10 ranks of each other. For 77
queries (12.9%), the effectiveness measure is within 50 ranks
of each other. The remaining 518 queries (87.0%) perform
noticeably different (> 50 ranks apart).

C. Situations

In this study, we’ve also asked two research questions which
lead to two distinct comparisons. First, we compare a batch
TM-based FLT trained on the changesets of a project’s history
to one trained on the snapshot of source code entities. Second,
we compare a batch TM-based FLT trained on changesets to
a online TM-based FLT trained on the same changesets over
time. Our results are mixed between the research questions,
hence we end up with four possible situations; we will now
discuss each of these situations in detail.

1) Batch changesets are better than batch snapshot and
batch changesets are better than changesets in the simulated
environment: This situation occurs in 1 out of 6 systems at
the class-level, and 1 out of 6 systems at the method-level. We

77

Snapshot Changesets Historical
0

500

1000

1500

2000

2500

Snapshot Changesets Historical
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Fig. 3: Effectiveness measures for classes (left) and methods (right) across all 6 systems

hypothesize that this is due to the nature of the batch evaluation
versus the historical simulation. In the batch evaluation, the
model is trained on all data before being queried, while in the
historical simulation the model is trained on partial data before
being queried. This allows for the batch model to be more
accurate because it is trained on more data and reveals feature
location research evaluations may not be accurately portraying
how an FLT would perform in a real scenario.

2) Batch changesets are better than batch snapshot and
changesets in the simulated environment are better than batch
changesets: This situation occurs in 1 out of 6 systems at the
class-level, and 3 out of 6 systems at the method-level. We
hypothesize that this is due to the same previous reason, but
that historical simulation more accurately captures the correct
state of the system (i.e., the source code entities) at the point
in time when querying is done. Since querying on the batch
models is after the model is completely trained, there may be
source code entities that do not exist in the system anymore
that were at one time changed to complete a certain task. Again,
the historical simulation better captures this scenario.

3) Batch snapshot are better than batch changeset and
changesets in the simulated environment are better than batch
changesets: This situation occurs in 4 out of 6 systems at
the class-level, and 2 out of 6 systems at the method-level.
Similarly, this could be because of how the models are trained.
Although the batch changesets performed worse in both cases,
it does improve during historical simulation. This does not
mean that changesets are bad, but more accurately model the
system over time.

4) Batch snapshot are better than batch changeset and
batch changesets are better than changesets in the simulated
environment: We note that this situation never occurs. This
also supports the hypothesis that historical simulation more
accurately portrays the system over time. However, we cannot
conclude this without also historically simulating snapshot
TM-based FLTs.

VI. THREATS TO VALIDITY

Our study has limitations that impact the validity of our
findings, as well as our ability to generalize them. We describe
some of these limitations and their impacts.

Threats to internal validity include possible defects in our
tool chain and possible errors in our execution of the study
procedure, the presence of which might affect the accuracy
of our results and the conclusions we draw from them. We
controlled for these threats by testing our tool chain and by
assessing the quality of our data. Because we applied the same
tool chain to all subject systems, any errors are systematic and
are unlikely to affect our results substantially.

Another threat to internal validity pertains to the value of
parameters such as K that we selected for all models trained.
We decided that the changeset and snapshot models should
have the same parameters to help facilitate evaluation and
comparison. We argue that our study is not about selecting
the best parameters, but to show that our changeset TM-based
FLT approach is reasonable.

Threats to external validity concern the extent to which we
can generalize our results. The subjects of our study comprise
fourteen open source projects in Java, so we cannot gener-
alize our results to systems implemented in other languages.
However, the systems are of different sizes, are from different
domains, and have characteristics in common with those of
systems developed in industry.

Threats to construct validity concern measurements accu-
rately reflecting the features of interest. A possible threat to
construct validity is our benchmarks. Errors in the datasets
could result in inaccurate effectiveness measures. The datasets
were produced by other researchers, are publicly available, and
have been used in previous research [34], [35], [39]. While
both datasets extracted source code entities automatically from
changesets and patches, previous work shows this approach is
on par with manual extraction [40].

VII. CONCLUSIONS & FUTURE WORK

In this paper we conducted a study on modeling the topics of
changesets in comparison to the traditional snapshot approach.

78

We use latent Dirichlet allocation (LDA) to extract linguistic
topics from changesets and snapshots (releases).

We addressed two research questions regarding the perfor-
mance of a TM-based FLT trained on changesets. First, we
compare a batch TM-based FLT trained on the changesets of a
project’s history to one trained on the snapshot of source code
entities. We found that changesets can perform as well as or
better than snapshots. Second, we compare a batch TM-based
FLT trained on changesets to a historical simulation of a TM-
based FLT trained on the same changesets over time. We show
that the historical simulation more accurately portrays how a
FLT would execute in a real environment.

Our results encourage the idea that there is still much to
explore in the area of feature location. What other untapped
resources might be available? We show changesets are yet
another viable resource researchers and practitioners should
be taking advantage of for the feature location task. Our
results also show that research remains not only in improving
accuracies of FLTs, but also in solving the practical aspects
of building FLTs that are robust and agile enough to keep up
with fast-changing software.

Future work includes deploying this approach in a develop-
ment environment. Since the source code to our approach is
online, we encourage other researchers to investigate this future
work as well. We also would like to expand the simulation
parts of this study to include both snapshots and changesets. It
would be particularly useful to compare results between batch
snapshots and simulated snapshots.

Additional future work exists in regard to configuration. In
a changeset it may be desirable to parse further for source
code entities using island grammar parsing [41]. It may also
be desirable to only use portions of the changeset, such as only
using added or removed lines, or extracting changes between
the abstract syntax trees [42]. Most importantly, like previous
work [25], it would be wise to further investigate the effects
of the two online LDA variables, τ0 and κ. We leave these
options for future work.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
comments and helpful suggestions. This material is based upon
work supported by the National Science Foundation under
Grant No. 1156563.

REFERENCES

[1] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Trans. Softw. Eng., vol. 32,
no. 12, pp. 971–987, Dec. 2006.

[2] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[3] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An information
retrieval approach to concept location in source code,” in Proceedings
of the 11th Working Conference on Reverse Engineering. IEEE, 2004,
pp. 214–223.

[4] D. Blei, “Probabilistic topic models,” Communications of the ACM,
vol. 55, no. 4, pp. 77–84, Apr. 2012.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
the Journal of machine Learning research, vol. 3, pp. 993–1022, 2003.

[6] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman, “Indexing by latent semantic analysis,” Journal of the
American Society of Information Science, vol. 41, no. 6, pp. 391–407,
1990.

[7] D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol, and
V. Rajlich, “Feature location using probabilistic ranking of methods
based on execution scenarios and information retrieval,” Software
Engineering, IEEE Transactions on, vol. 33, no. 6, pp. 420–432, 2007.

[8] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization
using latent dirichlet allocation,” Information and Software Technology,
vol. 52, no. 9, pp. 972–990, 2010.

[9] M. Hoffman, F. R. Bach, and D. M. Blei, “Online learning for latent
dirichlet allocation,” in Advances in Neural Information Processing
Systems 23, J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and
A. Culotta, Eds. Curran Associates, Inc., 2010, pp. 856–864.

[10] S. Rao, “Incremental update framework for efficient retrieval from
software libraries for bug localization,” Ph.D. dissertation, Purdue
University, 2013.

[11] A. Marcus and T. Menzies, “Software is data too,” in Proceedings of the
FSE/SDP workshop on Future of software engineering research. ACM,
2010, pp. 229–232.

[12] D. Lawrie, D. Binkley, and C. Morrell, “Normalizing source code
vocabulary,” in Reverse Engineering (WCRE), 2010 17th Working
Conference on. IEEE, 2010, pp. 3–12.

[13] B. Croft, D. Metzler, and T. Strohman, Search engines : information
retrieval in practice. Boston: Addison-Wesley, 2010.

[14] K. Zhai and J. Boyd-Graber, “Online topic models with infinite
vocabulary,” in Proc. Int’l Conf. on Machine Learning, ser. JMLR:
Workshop and Conference Proceedings, vol. 28, no. 1, 2013, pp.
561–569.

[15] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Hierarchical
dirichlet processes,” Journal of the american statistical association, vol.
101, no. 476, 2006.

[16] C. Wang, J. W. Paisley, and D. M. Blei, “Online variational inference
for the hierarchical dirichlet process,” in International conference on
artificial intelligence and statistics, 2011, pp. 752–760.

[17] V. Rajlich and N. Wilde, “The role of concepts in program
comprehension,” in Program Comprehension, 2002. Proceedings. 10th
International Workshop on. IEEE, 2002, pp. 271–278.

[18] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat: A
project memory for software development,” Software Engineering, IEEE
Transactions on, vol. 31, no. 6, pp. 446–465, 2005.

[19] S. Rao, H. Medeiros, and A. Kak, “An incremental update framework
for efficient retrieval from software libraries for bug localization,”
in Reverse Engineering (WCRE), 2013 20th Working Conference on.
IEEE, 2013, pp. 62–71.

[20] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and
V. Rajlich, “Combining probabilistic ranking and latent semantic
indexing for feature identification,” in Program Comprehension, 2006.
ICPC 2006. 14th IEEE International Conference on. IEEE, 2006, pp.
137–148.

[21] D. Poshyvanyk and A. Marcus, “Combining formal concept analysis
with information retrieval for concept location in source code,” in 15th
IEEE International Conference on Program Comprehension (ICPC ’07).
Washington, DC, USA: IEEE, Jun. 2007, pp. 37–48.

[22] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, “Feature location via
information retrieval based filtering of a single scenario execution trace,”
in Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering. ACM, 2007, pp. 234–243.

[23] G. Scanniello and A. Marcus, “Clustering support for static concept
location in source code,” in Program Comprehension (ICPC), 2011
IEEE 19th International Conference on. IEEE, 2011, pp. 1–10.

[24] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Source code retrieval for
bug localization using latent dirichlet allocation,” in Reverse Engineering,
2008. WCRE’08. 15th Working Conference on. IEEE, 2008, pp.
155–164.

[25] L. R. Biggers, C. Bocovich, R. Capshaw, B. P. Eddy, L. H. Etzkorn,
and N. A. Kraft, “Configuring latent dirichlet allocation based feature
location,” Empirical Software Engineering, vol. 19, no. 3, pp. 465–500,
2014.

[26] B. Bassett and N. A. Kraft, “Structural information based term weighting
in text retrieval for feature location,” in Program Comprehension
(ICPC), 2013 IEEE 21st International Conference on. IEEE, 2013, pp.
133–141.

79

[27] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Modeling
the evolution of topics in source code histories,” in Proc. 8th Working
Conf. on Mining Software Repositories, 2011, pp. 173–182.

[28] A. Hindle, M. W. Godfrey, and R. C. Holt, “What’s hot and what’s
not: Windowed developer topic analysis,” in Software Maintenance,
2009. ICSM 2009. IEEE International Conference on. IEEE, 2009, pp.
339–348.

[29] A. Hindle, C. Bird, T. Zimmermann, and N. Nagappan, “Do topics make
sense to managers and developers?” Empirical Software Engineering, pp.
1–37, 2014.

[30] C. S. Corley, K. L. Kashuda, D. S. May, and N. A. Kraft, “Modeling
changeset topics,” in Proc. 4th Wksp. on Mining Unstructured Data,
2014.

[31] A. T. T. Ying and M. P. Robillard, “Code fragment summarization,”
Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering - ESEC/FSE 2013, 2013.

[32] R. Vasa, J.-G. Schneider, and O. Nierstrasz, “The inevitable stability of
software change,” in Software Maintenance, 2007. ICSM 2007. IEEE
International Conference on. IEEE, 2007, pp. 4–13.

[33] V. Basili, G. Caldiera, and H. Rombach, “The goal question metric
approach,” Encyclopedia of software engineering, vol. 2, no. 1994, pp.
528–532, 1994.

[34] B. Dit, A. Holtzhauer, D. Poshyvanyk, and H. Kagdi, “A dataset from
change history to support evaluation of software maintenance tasks,”
in Mining Software Repositories (MSR), 2013 10th IEEE Working
Conference on. IEEE, 2013, pp. 131–134.

[35] L. Moreno, J. J. Treadway, A. Marcus, and W. Shen, “On the use
of stack traces to improve text retrieval-based bug localization,” in
Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on, 2014, pp. 151–160.

[36] C. Fox, “Lexical analysis and stoplists,” in Information Retrieval: Data
Structures and Algorithms, W. Frakes and R. Baeza-Yates, Eds. Prentice-
Hall, 1992, pp. 102–130.

[37] R. Řehůřek and P. Sojka, “Software framework for topic modelling with
large corpora,” in Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. Valletta, Malta: ELRA, May 2010,
pp. 45–50.

[38] E. M. Voorhees, “The trec-8 question answering track report.” in TREC,
vol. 99, 1999, pp. 77–82.

[39] M. Revelle, B. Dit, and D. Poshyvanyk, “Using data fusion and
web mining to support feature location in software,” in Program
Comprehension (ICPC), 2010 IEEE 18th International Conference on.
IEEE, 2010, pp. 14–23.

[40] C. S. Corley, N. A. Kraft, L. H. Etzkorn, and S. K. Lukins, “Recovering
traceability links between source code and fixed bugs via patch analysis,”
in Proceedings of the 6th International Workshop on Traceability in
Emerging Forms of Software Engineering. ACM, 2011, pp. 31–37.

[41] L. Moonen, “Generating robust parsers using island grammars,” in
Reverse Engineering, 2001. Proceedings. Eighth Working Conference on.
IEEE, 2001, pp. 13–22.

[42] B. Fluri, M. Wursch, and H. Gall, “Do code and comments co-evolve? On
the relation between source code and comment changes,” in Proceedings
of the 14th Working Conference on Reverse Engineering, 2007, pp. 70–79.

80

